Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5.
Beaudart C, Reginster JY, Petermans J, Gillain S, Quabron A, Locquet M, et al. Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol. 2015;69:103–10.
Article PubMed CAS Google Scholar
Arango-Lopera VE, Arroyo P, Gutierrez-Robledo LM, Perez-Zepeda MU, Cesari M. Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging. 2013;17(3):259–62.
Article PubMed PubMed Central CAS Google Scholar
Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985). 2000;89(1):81–8.
Article PubMed CAS Google Scholar
Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419(6909):808–14.
Article PubMed CAS Google Scholar
Sheard PW, Anderson RD. Age-related loss of muscle fibres is highly variable amongst mouse skeletal muscles. Biogerontology. 2012;13(2):157–67.
Article PubMed CAS Google Scholar
Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, et al. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp Gerontol. 2002;37(8–9):1055–68.
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46.
Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16:21.
Article PubMed PubMed Central Google Scholar
Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS One. 2016;11(1):e0147198.
Article PubMed PubMed Central Google Scholar
Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21(8):854–62.
Article PubMed PubMed Central CAS Google Scholar
Ciciliot S, Schiaffino S. Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des. 2010;16(8):906–14.
Article PubMed CAS Google Scholar
Lexell J, Henriksson-Larsen K, Winblad B, Sjostrom M. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve. 1983;6(8):588–95.
Article PubMed CAS Google Scholar
Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2–3):275–94.
Article PubMed CAS Google Scholar
Peckham M, Molloy JE, Sparrow JC, White DC. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil. 1990;11(3):203–15.
Article PubMed CAS Google Scholar
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531.
Article PubMed CAS Google Scholar
Deak II. A histochemical study of the muscles of Drosophila melanogaster. J Morphol. 1977;153(2):307–16.
Article PubMed CAS Google Scholar
Oas ST, Bryantsev AL, Cripps RM. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. J Cell Biol. 2014;206(7):895–908.
Article PubMed PubMed Central CAS Google Scholar
Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta. 2009;1790(10):1084–94.
Article PubMed CAS Google Scholar
Gartner LP. Aging and the visceral musculature of the adult fruitfly: an ultrastructural investigation. Trans Am Microsc Soc. 1977;96(1):48–55.
Article PubMed CAS Google Scholar
Takahashi A, Philpott DE, Miquel J. Electron microscope studies on aging Drosophila melanogaster. 3. Flight muscle. J Gerontol. 1970;25(3):222–8.
Article PubMed CAS Google Scholar
Webb S, Tribe MA. Are there major degenerative changes in the flight muscle of ageing diptera? Exp Gerontol. 1974;9(1):43–9.
Article PubMed CAS Google Scholar
Horne M, Krebushevski K, Wells A, Tunio N, Jarvis C, Francisco G, et al. Julius seizure, a drosophila mutant, defines a neuronal population underlying epileptogenesis. Genetics. 2017;205(3):1261–9.
Article PubMed PubMed Central CAS Google Scholar
Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev Biol. 2012;361(2):191–207.
Article PubMed CAS Google Scholar
Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995;5(6):635–42.
Article PubMed CAS Google Scholar
Drummond DR, Hennessey ES, Sparrow JC. Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet. 1991;226(1–2):70–80.
Article PubMed CAS Google Scholar
Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC, et al. Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J. 2008;95(5):2391–401.
Article PubMed PubMed Central CAS Google Scholar
Bryantsev AL, Castillo L, Oas ST, Chechenova MB, Dohn TE, Lovato TL. Myogenesis in Drosophila melanogaster: dissection of distinct muscle types for molecular analysis. New York: Myogenesis: Springer; 2019. p. 267–81.
Pearse AGE. Histochemistry, theoretical and applied. 3rd ed. Baltimore: Williams and Wilkins Co.; 1972.
Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nat Methods. 2014;11(2):121–2.
Article PubMed PubMed Central CAS Google Scholar
Al-Qusairi L, Laporte J. T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle. 2011;1(1):26.
Article PubMed PubMed Central CAS Google Scholar
Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 2001;15(22):2967–79.
Comments (0)