England J, Loughna S (2013) Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 70:1221–1239. https://doi.org/10.1007/s00018-012-1131-1
Article CAS PubMed Google Scholar
Guccione JM, Le Prell GS, de Tombe PP, Hunter WC (1997) Measurements of active myocardial tension under a wide range of physiological loading conditions. J Biomech 30:189–192. https://doi.org/10.1016/s0021-9290(96)00122-4
Article CAS PubMed Google Scholar
Hautbergue T, Antigny F, Boët A et al (2021) Right ventricle remodeling metabolic signature in experimental pulmonary hypertension models of chronic hypoxia and Monocrotaline exposure. Cells 10:1559. https://doi.org/10.3390/cells10061559
Article CAS PubMed PubMed Central Google Scholar
Hiram R, Naud P, Xiong F et al (2019) Right atrial mechanisms of Atrial Fibrillation in a rat model of Right Heart Disease. J Am Coll Cardiol 74:1332–1347. https://doi.org/10.1016/j.jacc.2019.06.066
Article CAS PubMed Google Scholar
Hoyer K, Krenz M, Robbins J, Ingwall JS (2007) Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy efficiency. J Mol Cell Cardiol 42:214–221. https://doi.org/10.1016/j.yjmcc.2006.08.116
Article CAS PubMed Google Scholar
Kettlewell S, Walker NL, Cobbe SM et al (2004) The electrophysiological and mechanical effects of 2,3-butane-dione monoxime and cytochalasin-D in the Langendorff perfused rabbit heart. Exp Physiol 89:163–172. https://doi.org/10.1113/expphysiol.2003.026732
Article CAS PubMed Google Scholar
Kmecova Z, Radik M, Veteskova J, CARDIAC MYOSIN-ISOFORM SHIFT IS ACCOMPANIED BY STABLE MUSCLE-SPECIFIC MICRORNAS IN MONOCROTALINE-INDUCED PULMONARY HYPERTENSION (2018) J Hypertens 36:e45. https://doi.org/10.1097/01.hjh.0000539082.69357.fe
Korstjens IJM, Rouws CHFC, van der Laarse WJ et al (2002) Myocardial force development and structural changes associated with monocrotaline induced cardiac hypertrophy and heart failure. J Muscle Res Cell Motil 23:93–102. https://doi.org/10.1023/a:1019988815436
Article CAS PubMed Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
Article CAS PubMed Google Scholar
Li Y, Wang Y, Li Y et al (2017) Osthole attenuates pulmonary arterial hypertension in monocrotaline–treated rats. Mol Med Rep 16:2823–2829. https://doi.org/10.3892/mmr.2017.6876
Article CAS PubMed Google Scholar
Lookin O, Kuznetsov D, Protsenko Y (2015) Sex differences in stretch-dependent effects on tension and ca(2+) transient of rat trabeculae in monocrotaline pulmonary hypertension. J Physiol Sci 65:89–98. https://doi.org/10.1007/s12576-014-0341-8
Article CAS PubMed Google Scholar
Malmqvist UP, Aronshtam A, Lowey S (2004) Cardiac myosin isoforms from different species have unique enzymatic and mechanical properties. Biochemistry 43:15058–15065. https://doi.org/10.1021/bi0495329
Article CAS PubMed Google Scholar
Mariano TB, de Souza Castilho AC, de Almeida Sabela AKD et al (2021) Preventive training does not interfere with mRNA-encoding myosin and collagen expression during pulmonary arterial hypertension. PLoS ONE 16:e0244768. https://doi.org/10.1371/journal.pone.0244768
Article CAS PubMed PubMed Central Google Scholar
Marston SB, Fraser ID, Bing W, Roper G (1996) A simple method for automatic tracking of actin filaments in the motility assay. J Muscle Res Cell Motil 17:497–506. https://doi.org/10.1007/BF00123365
Article CAS PubMed Google Scholar
Matyushenko AM, Artemova NV, Shchepkin DV et al (2014) Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. FEBS J 281:2004–2016. https://doi.org/10.1111/febs.12756
Article CAS PubMed Google Scholar
Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390. https://doi.org/10.1161/01.res.86.4.386
Article CAS PubMed Google Scholar
Nakano M, Koga M, Hashimoto T et al (2022) Right ventricular overloading is attenuated in monocrotaline-induced pulmonary hypertension model rats with a disrupted Gpr143 gene, the gene that encodes the 3,4-l-dihydroxyphenyalanine (l-DOPA) receptor. J Pharmacol Sci 148:214–220. https://doi.org/10.1016/j.jphs.2021.11.008
Article CAS PubMed Google Scholar
Nakata TM, Tanaka R, Yoshiyuki R et al (2015) Effects of single drug and combined short-term administration of Sildenafil, Pimobendan, and Nicorandil on right ventricular function in rats with Monocrotaline-induced pulmonary hypertension. J Cardiovasc Pharmacol 65:640–648. https://doi.org/10.1097/FJC.0000000000000236
Article CAS PubMed PubMed Central Google Scholar
Nakayama R, Takaya Y, Nakamura K et al (2021) Efficacy of shear wave elastography for evaluating right ventricular myocardial fibrosis in monocrotaline-induced pulmonary hypertension rats. J Cardiol 78:17–23. https://doi.org/10.1016/j.jjcc.2021.01.015
Narolska NA, van Loon RB, Boontje NM et al (2005) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221–229. https://doi.org/10.1016/j.cardiores.2004.09.029
Article CAS PubMed Google Scholar
Nassar SZ, Hassaan PS, Abdelmonsif DA, ElAchy SN (2018) Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: a possible implication of endothelin-1. Life Sci 201:89–101. https://doi.org/10.1016/j.lfs.2018.03.045
Article CAS PubMed Google Scholar
Nikitina LV, Kopylova GV, Shchepkin DV et al (2015) Investigations of Molecular Mechanisms of actin-myosin interactions in Cardiac muscle. Biochem (Mosc) 80:1748–1763. https://doi.org/10.1134/S0006297915130106
Pacagnelli FL, de Almeida Sabela AKD, Okoshi K et al (2016) Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. Int J Exp Pathol 97:238–247. https://doi.org/10.1111/iep.12166
Article CAS PubMed PubMed Central Google Scholar
Pardee JD, Spudich JA (1982) Purification of muscle actin. Methods Cell Biol 24:271–289. https://doi.org/10.1016/s0091-679x(08)60661-5
Article CAS PubMed Google Scholar
Patel RB, Li E, Benefield BC et al (2020) Diffuse right ventricular fibrosis in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Fail 7:253–263. https://doi.org/10.1002/ehf2.12565
Article PubMed PubMed Central Google Scholar
Pham T, Nisbet L, Taberner A et al (2018) Pulmonary arterial hypertension reduces energy efficiency of right, but not left, rat ventricular trabeculae. J Physiol 596:1153–1166. https://doi.org/10.1113/JP275578
Article CAS PubMed PubMed Central Google Scholar
Pham T, Tran K, Taberner AJ et al (2022) Cross-bridge thermodynamics in pulmonary arterial hypertensive right-ventricular failure. J Appl Physiol (1985) 132:1338–1349. https://doi.org/10.1152/japplphysiol.00014.2022
Article CAS PubMed Google Scholar
Potter JD (1982) Preparation of troponin and its subunits. Methods Enzymol 85 Pt B 241–263. https://doi.org/10.1016/0076-6879(82)85024-6
Protsenko YL, Kuznetsov DA, Lisin RV et al (2018) Effect of calcium on slow force responses in isolated right ventricle preparations of healthy and hypertrophied myocardium in male and female rats. Bull Exp Biol Med 165:315–318. https://doi.org/10.1007/s10517-018-4158-y
Article CAS PubMed Google Scholar
Qi L, Lv T, Cheng Y et al (2019) Fasudil dichloroacetate (FDCA), an orally available agent with potent therapeutic efficiency on monocrotaline-induced pulmonary arterial hypertension rats. Bioorg Med Chem Lett 29:1812–1818. https://doi.org/10.1016/j.bmcl.2019.05.006
Article CAS PubMed Google Scholar
Reiser PJ, Kline WO (1998) Electrophoretic separation and quantitation of cardiac myosin heavy chain isoforms in eight mammalian species. Am J Physiol 274:H1048–1053. https://doi.org/10.1152/ajpheart.1998.274.3.H1048
Article CAS PubMed Google Scholar
Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–1820. https://doi.org/10.1152/ajpheart.2001.280.4.H1814
Article CAS PubMed Google Scholar
Sabourin J, Boet A, Rucker-Martin C et al (2018) Ca2 + handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. J Mol Cell Cardiol 118:208–224. https://doi.org/10.1016/j.yjmcc.2018.04.003
Article CAS PubMed Google Scholar
Szabó Z, Katkits K, Gabro G, Andersson RG (2009) The contractility of isolated rat atrial tissue during Hypoxia is better preserved in a high- or zero-glucose environment than in a normal glucose environment. Int J Biomed Sci 5:12–16
PubMed PubMed Central Google Scholar
Tang C, Luo Y, Li S et al (2021) Characteristics of inflammation process in monocrotaline-induced pulmonary arterial hypertension in rats. Biomed Pharmacother 133:111081. https://doi.org/10.1016/j.biopha.2020.111081
Article CAS PubMed Google Scholar
ter Keurs HEDJ, Deis N, Landesberg A et al (2003) Force, sarcomere shortening velocity and ATPase activity. Adv Exp Med Biol 538:583–602 discussion 602
Comments (0)