Annals of Nutrition and Metabolism
Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractIntroduction: To increase the total carnitine (TC) content in muscles, LC should be co-ingested with carbohydrates to induce an insulin response. Leucine has an insulin secretagogue effect. Therefore, the primary aim of this study was to examine the effects of 24 weeks of LC and leucine supplementation on the skeletal muscle TC content, muscle mass, and strength in active college-aged subjects. The secondary aim was to determine the activation of the Akt/mTOR signaling pathway in skeletal muscles after supplementation. Methods: Over the 24 weeks, the participants were supplemented with either 1 g of L-carnitine-L-tartrate and 3 g of leucine per day (LC + L group; n = 7) or 4 g of leucine per day (L group; n = 7) as a placebo. Before and 24 weeks after the initiation of the study protocol, the free carnitine (FC) and TC content in plasma and muscle samples, as well as body composition and muscle strength were measured. In addition, the phosphorylation of the Akt/mTOR pathway proteins in muscles was evaluated. Results: Plasma FC and TC content increased in LC + L group after 24 weeks of supplementation (p = 0.003 and 0.010, respectively). However, the skeletal muscle FC and TC content were not affected by the supplementation protocol. No changes were noted in the body mass and composition; serum insulin-like growth factor-1 concentration; and phosphorylation of the signaling pathway proteins Akt, mTOR and p70S6K. Conclusion: LC supplementation may have the potential to exert beneficial effects in muscle atrophy. Therefore, additional research is necessary to investigate the effect of various LC supplementation protocols.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Comments (0)