1. Trentino, KM, Leahy, MF, Sanfilippo, FM, et al. Associations of nadir haemoglobin level and red blood cell transfusion with mortality and length of stay in surgical specialties: A retrospective cohort study. Anaesthesia. 2019;74(6):726-734. doi:
10.1111/anae.14636 Google Scholar |
Crossref |
Medline2. Frew, N, Alexander, D, Hood, J, Acornley, A. Impact of a blood management protocol on transfusion rates and outcomes following total hip and knee arthroplasty. Ann R Coll Surg Engl. 2016;98(6):380-386. doi:
10.1308/rcsann.2016.0139 Google Scholar |
Crossref |
Medline |
ISI3. Abdullah, HR, Sim, YE, Hao, Y, et al. Association between preoperative anaemia with length of hospital stay among patients undergoing primary total knee arthroplasty in Singapore: A single-centre retrospective study. BMJ Open. 2017;7(6):e016403. doi:
10.1136/bmjopen-2017-016403 Google Scholar |
Crossref |
Medline4. Sachdeva, I, Carmouche, JJ. Postoperative anemia predicts length of stay for geriatric patients undergoing minimally invasive lumbar spine fusion surgery. Geriatr Orthop Surg Rehabil. 2020;11:2151459320911874. doi:
10.1177/2151459320911874 Google Scholar |
SAGE Journals |
ISI5. Spahn, DR, Goodnough, LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855-1865. doi:
10.1016/s0140-6736(13)60808-9 Google Scholar |
Crossref |
Medline |
ISI6. Wu, WC, Schifftner, TL, Henderson, WG, et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA. 2007;297(22):2481-2488. doi:
10.1001/jama.297.22.2481 Google Scholar |
Crossref |
Medline |
ISI7. Ferraris, VA, Davenport, DL, Saha, SP, Austin, PC, Zwischenberger, JB. Surgical outcomes and transfusion of minimal amounts of blood in the operating room. Arch Surg. 2012;147(1):49-55. doi:
10.1001/archsurg.2011.790 Google Scholar |
Crossref |
Medline8. Gupta, PK, Sundaram, A, Mactaggart, JN, et al. Preoperative anemia is an independent predictor of postoperative mortality and adverse cardiac events in elderly patients undergoing elective vascular operations. Ann Surg. 2013;258(6):1096-1102. doi:
10.1097/SLA.0b013e318288e957 Google Scholar |
Crossref |
Medline |
ISI9. Spiess, BD . Blood transfusion and infection after cardiac surgery. Ann Thorac Surg. 2013;95(6):1855-1858. doi:
10.1016/j.athoracsur.2013.03.047 Google Scholar |
Crossref |
Medline10. Zhu, Y, Zhang, F, Chen, W, Liu, S, Zhang, Q, Zhang, Y. Risk factors for periprosthetic joint infection after total joint arthroplasty: A systematic review and meta-analysis. J Hosp Infect. 2015;89(2):82-89. doi:
10.1016/j.jhin.2014.10.008 Google Scholar |
Crossref |
Medline11. Resende, VAC, Neto, AC, Nunes, C, Andrade, R, Espregueira-Mendes, J, Lopes, S. Higher age, female gender, osteoarthritis and blood transfusion protect against periprosthetic joint infection in total hip or knee arthroplasties: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021;29(1):8-43. doi:
10.1007/s00167-018-5231-9 Google Scholar |
Crossref |
Medline12. Watts, CD, Pagnano, MW. Minimising blood loss and transfusion in contemporary hip and knee arthroplasty. J Bone Joint Surg Br. 2012;94(11 suppl A):8-10. doi:
10.1302/0301-620x.94b11.30618 Google Scholar |
Crossref |
Medline13. Macknet, MR, Allard, M, Applegate, RL, Rook, J. The accuracy of noninvasive and continuous total hemoglobin measurement by pulse CO-Oximetry in human subjects undergoing hemodilution. Anesth Analg. 2010;111(6):1424-1426. doi:
10.1213/ANE.0b013e3181fc74b9 Google Scholar |
Crossref |
Medline |
ISI14. Erdogan Kayhan, G, Colak, YZ, Sanli, M, Ucar, M, Toprak, HI. Accuracy of non-invasive hemoglobin monitoring by pulse CO-oximeter during liver transplantation. Minerva Anestesiol. 2017;83(5):485-492. doi:
10.23736/s0375-9393.17.11652-4 Google Scholar |
Crossref |
Medline15. Awada, WN, Mohmoued, MF, Radwan, TM, Hussien, GZ, Elkady, HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: A prospective cohort study. J Clin Monit Comput. 2015;29(6):733-740. doi:
10.1007/s10877-015-9660-4 Google Scholar |
Crossref |
Medline16. Galvagno, SM, Hu, P, Yang, S, et al. Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients. J Clin Monit Comput. 2015;29(6):815-821. doi:
10.1007/s10877-015-9671-1 Google Scholar |
Crossref |
Medline17. Hiscock, R, Kumar, D, Simmons, SW. Systematic review and meta-analysis of method comparison studies of Masimo pulse co-oximeters (Radical-7 or Pronto-7) and HemoCue(R) absorption spectrometers (B-Hemoglobin or 201+) with laboratory haemoglobin estimation. Anaesth Intensive Care. 2015;43(3):341-350. doi:
10.1177/0310057x1504300310 Google Scholar |
SAGE Journals18. Frasca, D, Dahyot-Fizelier, C, Catherine, K, Levrat, Q, Debaene, B, Mimoz, O. Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients. Crit Care Med. 2011;39(10):2277-2282. doi:
10.1097/CCM.0b013e3182227e2d Google Scholar |
Crossref |
Medline |
ISI19. Clemmesen, CG, Palm, H, Foss, NB. Delay in detection and treatment of perioperative anemia in hip fracture surgery and its impact on postoperative outcomes. Injury. 2019;50(11):2034-2039. doi:
10.1016/j.injury.2019.09.001 Google Scholar |
Crossref |
Medline20. Carson, JL, Guyatt, G, Heddle, NM, et al. Clinical practice guidelines from the AABB: Red blood cell transfusion thresholds and storage. JAMA. 2016;316(19):2025-2035. doi:
10.1001/jama.2016.9185 Google Scholar |
Crossref |
Medline21. Adel, A, Awada, W, Abdelhamid, B, et al. Accuracy and trending of non-invasive hemoglobin measurement during different volume and perfusion statuses. J Clin Monit Comput. 2018;32(6):1025-1031. doi:
10.1007/s10877-018-0101-z Google Scholar |
Crossref |
Medline22. Applegate Ii, RL, Applegate, PM, Cannesson, M, Peiris, P, Ladlie, BL, Torp, K. Multicenter comparison of three intraoperative hemoglobin trend monitoring methods. J Clin Monit Comput. 2020;34(5):883-892. doi:
10.1007/s10877-019-00428-3 Google Scholar |
Crossref |
Medline23. Miyashita, R, Hirata, N, Sugino, S, Mimura, M, Yamakage, M. Improved non-invasive total haemoglobin measurements after in-vivo adjustment. Anaesthesia. 2014;69(7):752-756. doi:
10.1111/anae.12681 Google Scholar |
Crossref |
Medline24. Frasca, D, Mounios, H, Giraud, B, Boisson, M, Debaene, B, Mimoz, O. Continuous monitoring of haemoglobin concentration after in-vivo adjustment in patients undergoing surgery with blood loss. Anaesthesia. 2015;70(7):803-809. doi:
10.1111/anae.13028 Google Scholar |
Crossref |
Medline25. Xu, T, Yang, T, Kim, JB, Romig, MC, Sapirstein, A, Winters, BD. Evaluation of noninvasive hemoglobin monitoring in surgical critical care patients. Crit Care Med. 2016;44(6):e344-e352. doi:
10.1097/ccm.0000000000001634 Google Scholar |
Crossref |
Medline26. Tang, B, Yu, X, Xu, L, Zhu, A, Zhang, Y, Huang, Y. Continuous noninvasive hemoglobin monitoring estimates timing for detecting anemia better than clinicians: A randomized controlled trial. BMC Anesthesiol. 2019;19(1):80. doi:
10.1186/s12871-019-0755-1 Google Scholar |
Crossref |
Medline27. Ke, YH, Hwang, KY, Thin, TN, Sim, YE, Abdullah, HR. The usefulness of non-invasive co-oximetry haemoglobin measurement for screening pre-operative anaemia. Anaesthesia. 2021;76(1):54-60. doi:
10.1111/anae.15171 Google Scholar |
Crossref |
Medline28. Campos, C, Calheiros, J, Kreuzer, M, et al. Clinical implications of using non-invasive haemoglobin monitoring for red blood cell transfusion decision in hip arthroplasty. Transfus Apher Sci. 2020;59(4):102770. doi:
10.1016/j.transci.2020.102770 Google Scholar |
Crossref |
Medline
Comments (0)