E. Pei et al (ed.), Springer Handbook of Additive Manufacturing (2023). https://doi.org/10.1007/978-3-031-20752-5
Additive manufacturing market size predicted to grow at over 18 %. [Online]. Available: https://additive-manufacturing-report.com/additive-manufacturing-market/
D. Kalaskar, 3D Printing in Medicine (2023)
ISO/ASTM 52900:2021(en) Additive manufacturing—General principles—Fundamentals and vocabulary. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en
M. Salmi, Additive manufacturing processes in medical applications. Materials 14(1), 1–16 (2021). https://doi.org/10.3390/ma14010191
Article MathSciNet Google Scholar
Google Academic. [Online]. Available: https://scholar.google.es
International Standards Organization, ISO 13485:2016. Medical devices—Quality management systems—Requirements for regulatory purposes
S. Bastawrous, N. Wake, D. Levin, B. Ripley, Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdom. Radiol. 43(10), 2809–2822 (2018). https://doi.org/10.1007/s00261-018-1554-8
Z. Jin et al., 3D printing of physical organ models: recent developments and challenges. Adv. Sci. 8(17), 1–27 (2021). https://doi.org/10.1002/advs.202101394
D. Song, Y. Xu, S. Liu, L. Wen, X. Wang, Progress of 3d bioprinting in organ manufacturing. Polymers 13(18), 1–32 (2021). https://doi.org/10.3390/polym13183178
V.S. Sukanya, N. Panigrahy, S.N. Rath, Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur. J. Pediatr. 180(2), 323–332 (2021). https://doi.org/10.1007/s00431-020-03819-w
V. Saceleanu et al., Production of synthetic models for neuro-oncology training by additive manufacturing. Appl. Sci. 11(24) (2021). https://doi.org/10.3390/app112411823
A. Pietrabissa et al., An overview on 3D printing for abdominal surgery. Surg. Endosc. 34(1), 1–13 (2020). https://doi.org/10.1007/s00464-019-07155-5
D. Karaman, S.M. Willerth, Utilizing additive manufacturing to produce organ mimics and imaging phantoms. Surgeries (Switzerland) 4(1), 58–72 (2023). https://doi.org/10.3390/surgeries4010008
K.J. Shah, J.C. Peterson, R. Chamoun, 3D printed models in neurosurgical training. pp. 47–64. https://doi.org/10.1007/978-3-319-75583-0_4
T. Mashiko, N. Kaneko, T. Konno, K. Otani, R. Nagayama, E. Watanabe, Training in cerebral aneurysm clipping using self-made 3-dimensional models. J. Surg. Educ. 74(4), 681–689 (2017). https://doi.org/10.1016/j.jsurg.2016.12.010
L. Wang et al., Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg. 103, 671–679 (2017). https://doi.org/10.1016/j.wneu.2017.04.098
M.A. Petrov, Y.V. Zhivotovskaya, A.V. Ivkov, Segmentation and 3D-printing of anatomical phantoms of human bones using results obtained by computer tomography. AIP Conf. Proc. 2697 (2023). https://doi.org/10.1063/5.0111962
M. Wanibuchi et al., Training for skull base surgery with a colored temporal bone model created by three-dimensional printing technology. World Neurosurg. 91, 66–72 (2016). https://doi.org/10.1016/j.wneu.2016.03.084
C. Fechner, T. Reyes del Castillo, J.E. Roos, C.J. Zech, M. Takes, R. López Benítez, “3D printed percutaneous transhepatic cholangiography and drainage (PTCD) simulator for interventional radiology. CardioVasc. Intervent. Radiol. 46(4), 500–507 (2023). https://doi.org/10.1007/s00270-022-03347-0
J.J. Bundy et al., Three-dimensional printing facilitates creation of a biliary endoscopy phantom for interventional radiology-operated endoscopy training. Curr. Probl. Diagn. Radiol. 48(5), 456–461 (2019). https://doi.org/10.1067/j.cpradiol.2018.08.004
T.F. Valenzuela, P.A. Iaizzo, Post-procedure micro-CT analyses of coronary artery stenting in left main vessels of reanimated and perfusion-fixed human hearts. Biomed. Eng. Online 22(1), 1–14 (2023). https://doi.org/10.1186/s12938-023-01090-2
M. Baba et al., Development and evaluation of an original phantom model of ultrasonography-guided thyroid gland biopsy for the training of surgical residents and students. Surg. Today 53(4), 443–450 (2023). https://doi.org/10.1007/s00595-022-02582-9
J. Ock et al., An interactive and realistic phantom for cricothyroidotomy simulation of a patient with obesity through a reusable design using 3D-printing and Arduino. Comput. Methods Programs Biomed. 233, 107478 (2023). https://doi.org/10.1016/j.cmpb.2023.107478
M.B. Cavalcante et al., Self-made transvaginal ultrasound simulator: new training equipment in ultrasound evaluation of controlled ovarian stimulation and oocyte retrieval. J. Ultrason. 23(93), E73–E79 (2023). https://doi.org/10.15557/jou.2023.0014
Article PubMed PubMed Central Google Scholar
M.A. AlReefi et al., Development and validation of a septoplasty training model using 3-dimensional printing technology. Int. Forum Allergy Rhinol 7(4), 399–404 (2017). https://doi.org/10.1002/alr.21887
J.T. Lichtenstein et al., 3D-printed simulation device for orbital surgery. J. Surg. Educ. 74(1), 2–8 (2017). https://doi.org/10.1016/j.jsurg.2016.07.005
G. Vitagliano, L. Mey, L. Rico, S. Birkner, M. Ringa, M. Biancucci, Construction of a 3D surgical model for minimally invasive partial nephrectomy: the urotrainer VK-1. Curr. Urol. Rep. 22(9), 3–8 (2021). https://doi.org/10.1007/s11934-021-01060-y
A.H. Bati et al., Surgical planning with patient-specific three-dimensional printed pancreaticobiliary disease models—cross-sectional study. Int. J. Surg. 80(April), 175–183 (2020). https://doi.org/10.1016/j.ijsu.2020.06.017
P.R. Bordon Perez et al., Additive manufacturing of forceps with continuous carbon fiber for virtual childbirth training. Dyna (Medellin) DYNA-ACELERADO (2024). https://doi.org/10.6036/11091
Comments (0)