Medical Models by Additive Manufacturing for Training

E. Pei et al (ed.), Springer Handbook of Additive Manufacturing (2023). https://doi.org/10.1007/978-3-031-20752-5

Additive manufacturing market size predicted to grow at over 18 %. [Online]. Available: https://additive-manufacturing-report.com/additive-manufacturing-market/

D. Kalaskar, 3D Printing in Medicine (2023)

Google Scholar 

ISO/ASTM 52900:2021(en) Additive manufacturing—General principles—Fundamentals and vocabulary. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en

M. Salmi, Additive manufacturing processes in medical applications. Materials 14(1), 1–16 (2021). https://doi.org/10.3390/ma14010191

Article  MathSciNet  Google Scholar 

Google Academic. [Online]. Available: https://scholar.google.es

International Standards Organization, ISO 13485:2016. Medical devices—Quality management systems—Requirements for regulatory purposes

Google Scholar 

S. Bastawrous, N. Wake, D. Levin, B. Ripley, Principles of three-dimensional printing and clinical applications within the abdomen and pelvis. Abdom. Radiol. 43(10), 2809–2822 (2018). https://doi.org/10.1007/s00261-018-1554-8

Article  Google Scholar 

Z. Jin et al., 3D printing of physical organ models: recent developments and challenges. Adv. Sci. 8(17), 1–27 (2021). https://doi.org/10.1002/advs.202101394

Article  ADS  Google Scholar 

D. Song, Y. Xu, S. Liu, L. Wen, X. Wang, Progress of 3d bioprinting in organ manufacturing. Polymers 13(18), 1–32 (2021). https://doi.org/10.3390/polym13183178

Article  Google Scholar 

V.S. Sukanya, N. Panigrahy, S.N. Rath, Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur. J. Pediatr. 180(2), 323–332 (2021). https://doi.org/10.1007/s00431-020-03819-w

V. Saceleanu et al., Production of synthetic models for neuro-oncology training by additive manufacturing. Appl. Sci. 11(24) (2021). https://doi.org/10.3390/app112411823

A. Pietrabissa et al., An overview on 3D printing for abdominal surgery. Surg. Endosc. 34(1), 1–13 (2020). https://doi.org/10.1007/s00464-019-07155-5

Article  PubMed  Google Scholar 

D. Karaman, S.M. Willerth, Utilizing additive manufacturing to produce organ mimics and imaging phantoms. Surgeries (Switzerland) 4(1), 58–72 (2023). https://doi.org/10.3390/surgeries4010008

Article  Google Scholar 

K.J. Shah, J.C. Peterson, R. Chamoun, 3D printed models in neurosurgical training. pp. 47–64. https://doi.org/10.1007/978-3-319-75583-0_4

T. Mashiko, N. Kaneko, T. Konno, K. Otani, R. Nagayama, E. Watanabe, Training in cerebral aneurysm clipping using self-made 3-dimensional models. J. Surg. Educ. 74(4), 681–689 (2017). https://doi.org/10.1016/j.jsurg.2016.12.010

Article  PubMed  Google Scholar 

L. Wang et al., Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg. 103, 671–679 (2017). https://doi.org/10.1016/j.wneu.2017.04.098

Article  PubMed  Google Scholar 

M.A. Petrov, Y.V. Zhivotovskaya, A.V. Ivkov, Segmentation and 3D-printing of anatomical phantoms of human bones using results obtained by computer tomography. AIP Conf. Proc. 2697 (2023). https://doi.org/10.1063/5.0111962

M. Wanibuchi et al., Training for skull base surgery with a colored temporal bone model created by three-dimensional printing technology. World Neurosurg. 91, 66–72 (2016). https://doi.org/10.1016/j.wneu.2016.03.084

Article  PubMed  Google Scholar 

C. Fechner, T. Reyes del Castillo, J.E. Roos, C.J. Zech, M. Takes, R. López Benítez, “3D printed percutaneous transhepatic cholangiography and drainage (PTCD) simulator for interventional radiology. CardioVasc. Intervent. Radiol. 46(4), 500–507 (2023). https://doi.org/10.1007/s00270-022-03347-0

J.J. Bundy et al., Three-dimensional printing facilitates creation of a biliary endoscopy phantom for interventional radiology-operated endoscopy training. Curr. Probl. Diagn. Radiol. 48(5), 456–461 (2019). https://doi.org/10.1067/j.cpradiol.2018.08.004

Article  PubMed  Google Scholar 

T.F. Valenzuela, P.A. Iaizzo, Post-procedure micro-CT analyses of coronary artery stenting in left main vessels of reanimated and perfusion-fixed human hearts. Biomed. Eng. Online 22(1), 1–14 (2023). https://doi.org/10.1186/s12938-023-01090-2

Article  Google Scholar 

M. Baba et al., Development and evaluation of an original phantom model of ultrasonography-guided thyroid gland biopsy for the training of surgical residents and students. Surg. Today 53(4), 443–450 (2023). https://doi.org/10.1007/s00595-022-02582-9

Article  PubMed  Google Scholar 

J. Ock et al., An interactive and realistic phantom for cricothyroidotomy simulation of a patient with obesity through a reusable design using 3D-printing and Arduino. Comput. Methods Programs Biomed. 233, 107478 (2023). https://doi.org/10.1016/j.cmpb.2023.107478

Article  PubMed  Google Scholar 

M.B. Cavalcante et al., Self-made transvaginal ultrasound simulator: new training equipment in ultrasound evaluation of controlled ovarian stimulation and oocyte retrieval. J. Ultrason. 23(93), E73–E79 (2023). https://doi.org/10.15557/jou.2023.0014

Article  PubMed  PubMed Central  Google Scholar 

M.A. AlReefi et al., Development and validation of a septoplasty training model using 3-dimensional printing technology. Int. Forum Allergy Rhinol 7(4), 399–404 (2017). https://doi.org/10.1002/alr.21887

Article  PubMed  Google Scholar 

J.T. Lichtenstein et al., 3D-printed simulation device for orbital surgery. J. Surg. Educ. 74(1), 2–8 (2017). https://doi.org/10.1016/j.jsurg.2016.07.005

Article  PubMed  Google Scholar 

G. Vitagliano, L. Mey, L. Rico, S. Birkner, M. Ringa, M. Biancucci, Construction of a 3D surgical model for minimally invasive partial nephrectomy: the urotrainer VK-1. Curr. Urol. Rep. 22(9), 3–8 (2021). https://doi.org/10.1007/s11934-021-01060-y

Article  Google Scholar 

A.H. Bati et al., Surgical planning with patient-specific three-dimensional printed pancreaticobiliary disease models—cross-sectional study. Int. J. Surg. 80(April), 175–183 (2020). https://doi.org/10.1016/j.ijsu.2020.06.017

Article  PubMed  Google Scholar 

P.R. Bordon Perez et al., Additive manufacturing of forceps with continuous carbon fiber for virtual childbirth training. Dyna (Medellin) DYNA-ACELERADO (2024). https://doi.org/10.6036/11091

Comments (0)

No login
gif