Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pr. 2019;157:107843. https://doi.org/10.1016/J.DIABRES.2019.107843.
Lakshmi PK, Kumar S, Pawar S, Kuriakose BB, Sudheesh MS, Pawar RS. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol Res. 2020;159:104925. https://doi.org/10.1016/J.PHRS.2020.104925.
Article CAS PubMed Google Scholar
Kabir MT, Tabassum N, Uddin MS, Aziz F, Behl T, Mathew B, et al. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid Based Complement Altern Med. 2021;2021:9940169. https://doi.org/10.1155/2021/9940169.
Gunatilaka AL, Wijeratne EK Natural products from bacteria and fungi. In: Encyclopedia of life science systems (EOLSS). UK: Eolss Publishers Co; 2000.
Islam MT. Diterpenes and their derivatives as potential anticancer agents. Phyther Res. 2017;31:691–712.
Islam MT, Ali ES, Mubarak MS. Anti-obesity effect of plant diterpenes and their derivatives: a review. Phyther Res. 2020;34:1216–25.
Kataria A, Srivastava A, Singh DD, Haque S, Han I, Yadav DK. Systematic computational strategies for identifying protein targets and lead discovery. RSC Med Chem. 2024;15:2254–69.
Article CAS PubMed PubMed Central Google Scholar
Bobe G, Zhang Z, Kopp R, Garzotto M, Shannon J, Takata Y. Phytol and its metabolites phytanic and pristanic acids for risk of cancer: current evidence and future directions. Eur J Cancer Prev. 2020;29:191–200.
Article PubMed PubMed Central Google Scholar
Wang J, Hu X, Ai W, Zhang F, Yang K, Wang L, et al. Phytol increases adipocyte number and glucose tolerance through activation of PI3K/Akt signaling pathway in mice fed high-fat and high-fructose diet. Biochem Biophys Res Commun. 2017;489:432–8.
Article CAS PubMed Google Scholar
Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:e142241 https://doi.org/10.1172/JCI142241.
Article CAS PubMed PubMed Central Google Scholar
Nandave M The history of the development of SGLT2 Inhibitors for the Treatment of diabetes: from biology to chemistry. Insodium-glucose cotransporter-2 (SGLT2) Inhibitors in heart failure: Mechanisms and Clinical Applications: A Machine-Generated Literature Overview. Singapore: Springer Nature Singapore. 2024. pp. 1–32. https://doi.org/10.1007/978-981-97-7568-2_1.
Venkatachalapathi A, Thenmozhi K, Karthika K, Ali MA, Paulsamy S, AlHemaid F, et al. Evaluation of a labdane diterpene forskolin isolated from Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae) revealed promising antidiabetic and antihyperlipidemic pharmacological properties. Saudi J Biol Sci. 2019;26:1710–5.
Article CAS PubMed Google Scholar
Chen JY, Peng SY, Cheng YH, Lee IT, Yu YH. Effect of forskolin on body weight, glucose metabolism and adipocyte size of diet-induced obesity in mice. Animals. 2021;11:1–12.
Ríos-Silva M, Trujillo X, Trujillo-Hernández B, Sánchez-Pastor E, Urzúa Z, Mancilla E, et al. Effect of chronic administration of forskolin on Glycemia and oxidative stress in rats with and without experimental diabetes. Int J Med Sci. 2014;11:448–52.
Article PubMed PubMed Central Google Scholar
Prabhakar Reddy P, Tiwari AK, Ranga Rao R, Madhusudhana K, Rama Subba Rao V, Ali AZ, et al. New Labdane diterpenes as intestinal α-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Bioorg Med Chem Lett. 2009;19:2562–5.
Article CAS PubMed Google Scholar
Djimabi K, Wang RY, Li B, Chen XH, Liu X, Wang MJ, et al. Diterpenoids with α-glucosidase inhibitory activities from the fruits of Vitex trifolia Linn. Fitoterapia. 2022;161:105248. https://doi.org/10.1016/j.fitote.2022.105248.
Article CAS PubMed Google Scholar
Yoshioka Y, Yoshimura N, Matsumura S, Wada H, Hoshino M, Makino S, et al. α-Glucosidase and pancreatic lipase inhibitory activities of diterpenes from Indian mango ginger (Curcuma amada Roxb.) and its derivatives. Molecules. 2019;24:4071.
Article CAS PubMed PubMed Central Google Scholar
Quan NV, Tran HD, Xuan TD, Ahmad A, Dat TD, Khanh TD, et al. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules. 2019;24:482.
Article PubMed PubMed Central Google Scholar
Lu CL, Wang LN, Li YJ, Fan QF, Huang QH, Chen JJ. Anti-hyperglycaemic effect of labdane diterpenes isolated from the rhizome of Amomum maximum Roxb., an edible plant in Southwest China. Nat Prod Res. 2022;36:2570–4.
Article CAS PubMed Google Scholar
Carney JR, Krenisky JM, Williamson RT, Luo J, Carlson TJ, Hsu VL, et al. Maprouneacin, a new daphnane diterpenoid with potent antihyperglycemic activity from Maprounea africana. J Nat Prod. 1999;62:345–7.
Article CAS PubMed Google Scholar
Latha M, Pari L, Ramkumar KM, Rajaguru P, Suresh T, Dhanabal T, et al. Antidiabetic effects of scoparic acid D isolated from scoparia dulcis in rats with streptozotocin-induced diabetes. Nat Prod Res. 2009;23:1528–40.
Article CAS PubMed Google Scholar
Nugroho AE, Rais IR, Setiawan I, Pratiwi PY, Hadibarata T, Tegar M, et al. Pancreatic effect of andrographolide isolated from Andrographis paniculata (Burm. f.) Nees. Pak J Biol Sci. 2014;17:22–31.
Article CAS PubMed Google Scholar
Yu BC, Hung CR, Chen WC, Cheng JT. Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Med. 2003;69:1075–9.
Article CAS PubMed Google Scholar
Jin L, Shi G, Ning G, Li X, Zhang Z. Andrographolide attenuates tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes. Mol Cell Endocrinol. 2011;332:134–9.
Article CAS PubMed Google Scholar
Zhang S, Huang F, Tian W, Lai J, Qian L, Hong W, et al. Andrographolide promotes pancreatic duct cells differentiation into insulin-producing cells by targeting PDX-1. Biochem Pharm. 2020;174:113785.
Article CAS PubMed Google Scholar
Yu BC, Chang CK, Su CF, Cheng JT. Mediation of β-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals. Naunyn Schmiedebergs Arch Pharm. 2008;377:529–40.
Li Y, Yan H, Zhang Z, Zhang G, Sun Y, Yu P, et al. Andrographolide derivative AL-1 improves insulin resistance through down-regulation of NF-κB signalling pathway. Br J Pharm. 2015;172:3151–8.
Chung MY, Choi HK, Hwang JT. AMPK activity: a primary target for diabetes prevention with therapeutic phytochemicals. Nutrients. 2021;13:4050.
Article CAS PubMed PubMed Central Google Scholar
Arha D, Pandeti S, Mishra A, Srivastava SP, Srivastava AK, Narender T, et al. Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo. Eur J Pharm. 2015;768:207–16.
Huang PK, Lin SR, Riyaphan J, Fu YS, Weng CF. Polyalthia clerodane diterpene potentiates hypoglycemia via inhibition of dipeptidyl peptidase 4. Int J Mol Sci. 2019;20:530. https://doi.org/10.3390/IJMS20030530.
Article CAS PubMed PubMed Central Google Scholar
Tashmukhamedova MA, Mukhina OA, Syrov VN, Khushbaktova ZA, Katkova SP, Kosovsky MI. Hypoglycemic activity of bicyclic diterpenoids of the clerodane series as compared to adebit and maninil. Probl Endokrinol (Mosk). 1992;38:48–50.
Silva RM, Santos FA, Rao VSN, Maciel MA, Pinto AC. Blood glucose- and triglyceride-lowering effect of trans-dehydrocrotonin, a diterpene from Croton cajucara benth., in rats. Diabetes Obes Metab. 2001;3:452–6.
Comments (0)