Brinton MA. The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol. 2002;56:371–402. https://doi.org/10.1146/annurev.micro.56.012302.160654.
Article CAS PubMed Google Scholar
Hunsperger EA, Roehrig JT. Temporal analyses of the neuropathogenesis of a west nile virus infection in mice. J Neurovirol. 2006;12:129–39. https://doi.org/10.1080/13550280600758341.
Article CAS PubMed Google Scholar
Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of west nile virus disease. Emerg Infect Dis. 2005;11:1167–73. https://doi.org/10.3201/eid1108.050289a.
Article PubMed PubMed Central Google Scholar
Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. Virology, pathology, and clinical manifestations of west nile virus disease. Emerg Infect Dis. 2005;11:1174–9. https://doi.org/10.3201/eid1108.050289b.
Article PubMed PubMed Central Google Scholar
Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD, Li H, et al. Immunoassay targeting nonstructural protein 5 to differentiate west nile virus infection from dengue and st. louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol. 2003;41:4217–23. https://doi.org/10.1128/JCM.41.9.4217-4223.2003.
Article CAS PubMed PubMed Central Google Scholar
Lim SP, Shi P-Y. West nile virus drug discovery. Viruses. 2013;5:2977–3006. https://doi.org/10.3390/v5122977.
Article CAS PubMed PubMed Central Google Scholar
Gu B, Ouzunov S, Wang L, Mason P, Bourne N, Cuconati A, et al. Discovery of small molecule inhibitors of west nile virus using a high-throughput sub-genomic replicon screen. Antivir Res. 2006;70:39–50. https://doi.org/10.1016/j.antiviral.2006.01.005.
Article CAS PubMed Google Scholar
Puig-Basagoiti F, Tilgner M, Forshey BM, Philpott SM, Espina NG, Wentworth DE, et al. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother. 2006;50:1320–9. https://doi.org/10.1128/aac.50.4.1320-1329.2006.
Article CAS PubMed PubMed Central Google Scholar
Noueiry AO, Olivo PD, Slomczynska U, Zhou Y, Buscher B, Geiss B, et al. Identification of Novel Small-Molecule Inhibitors of west nile virus infection. J Virol. 2007;81:11992–2004. https://doi.org/10.1128/jvi.01358-07.
Article CAS PubMed PubMed Central Google Scholar
Samanta S, Lim TL, Lam Y. Synthesis and in vitro evaluation of west nile virus protease inhibitors based on the 2-acetamide Scaffold. ChemMedChem. 2013;8:994–1001. https://doi.org/10.1002/cmdc.201300114.
Chung DH, Jonsson CB, Maddox C, McKellip SN, Moore BP, Heil M, et al. HTS-driven discovery of new chemotypes with west nile virus inhibitory activity. Molecules. 2010;15:1690–704. https://doi.org/10.3390/molecules15031690.
Article CAS PubMed PubMed Central Google Scholar
Cregar-Hernandez L, Jiao G-S, Johnson AT, Lehrer AT, Wong TAS, Margosiak SA. Small molecule pan-dengue and west nile virus NS3 protease inhibitors. Antivir Chem Chemother. 2011;21:209–17. https://doi.org/10.3851/IMP1767.
Article CAS PubMed Google Scholar
Shiryaev SA, Cheltsov AV, Gawlik K, Ratnikov BI, Strongin AY. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase. Assay Drug Dev Technol. 2011;9:69–78.
Article CAS PubMed PubMed Central Google Scholar
Nitsche C, Zhang L, Weigel LF, Schilz J, Graf D, Bartenschlager R, et al. Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J Med Chem. 2017;60:511–6. https://doi.org/10.1021/acs.jmedchem.6b01021.
Article CAS PubMed Google Scholar
Kühl N, Graf D, Bock J, Behnam MAM, Leuthold M-M, Klein CD. A new class of dengue and west nile virus protease inhibitors with submicromolar activity in reporter gene denv-2 protease and viral replication assays. J Med Chem. 2020;63:8179–97. https://doi.org/10.1021/acs.jmedchem.0c00413.
Article CAS PubMed Google Scholar
Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of dengue and west nile virus ns2b-ns3 protease display two distinct binding modes. J Med Chem. 2020;63:140–56. https://doi.org/10.1021/acs.jmedchem.9b00759.
Article CAS PubMed Google Scholar
Skoreński M, Milewska A, Pyrć K, Sieńczyk M, Oleksyszyn J. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. J Enzym Inhib Med Chem. 2019;34:8–14. https://doi.org/10.1080/14756366.2018.1506772.
Aravapalli S, Lai H, Teramoto T, Alliston KR, Lushington GH, Ferguson EL, et al. Inhibitors of dengue virus and west nile virus proteases based on the aminobenzamide scaffold. Bioorg Med Chem. 2012;20:4140–8. https://doi.org/10.1016/j.bmc.2012.04.055.
Article CAS PubMed PubMed Central Google Scholar
Olsen DB, Eldrup AB, Bartholomew L, Bhat B, Bosserman MR, Ceccacci A, et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis c virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother. 2004;48:3944–53. https://doi.org/10.1128/AAC.48.10.3944-3953.2004.
Article CAS PubMed PubMed Central Google Scholar
Eyer L, Zouharová D, Širmarová J, Fojtíková M, Štefánik M, Haviernik J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antivir Res. 2017;142:63–67. https://doi.org/10.1016/j.antiviral.2017.03.012.
Article CAS PubMed Google Scholar
Chen H, Liu L, Jones SA, Banavali N, Kass J, Li Z, et al. Selective inhibition of the west nile virus methyltransferase by nucleoside analogs. Antivir Res. 2013;97:232–9. https://doi.org/10.1016/j.antiviral.2012.12.012.
Article CAS PubMed Google Scholar
Vernekar SKV, Qiu L, Zhang J, Kankanala J, Li H, Geraghty RJ, et al. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of west nile virus and dengue virus. J Med Chem. 2015;58:4016–28. https://doi.org/10.1021/acs.jmedchem.5b00327.
Article CAS PubMed PubMed Central Google Scholar
Stahla-Beek HJ, April DG, Saeedi BJ, Hannah AM, Keenan SM, Geiss BJ. Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. J Virol. 2012;86:8730–9. https://doi.org/10.1128/jvi.00384-12.
Article CAS PubMed PubMed Central Google Scholar
Jordan I, Briese T, Fischer N, Lau JY-N, Lipkin WI. Ribavirin inhibits west nile virus replication and cytopathic effect in neural cells. J Infect Dis. 2000;182:1214–7. https://doi.org/10.1086/315847.
Article CAS PubMed Google Scholar
Martinez AA, Espinosa BA, Adamek RN, Thomas BA, Chau J, Gonzalez E, et al. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem. 2018;157:1202–13. https://doi.org/10.1016/j.ejmech.2018.08.077.
Article CAS PubMed Google Scholar
Dragoni F, Boccuto A, Picarazzi F, Giannini A, Giammarino F, Saladini F, et al. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antivir Res. 2020;175:104708. https://doi.org/10.1016/j.antiviral.2020.104708.
Article CAS PubMed Google Scholar
Jia F, Zou G, Fan J, Yuan Z. Identification of palmatine as an inhibitor of West Nile virus. Arch Virol. 2010;155:1325–9. https://doi.org/10.1007/s00705-010-0702-4.
Comments (0)