Targeting west nile virus replication by xanthine inhibitors

Brinton MA. The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol. 2002;56:371–402. https://doi.org/10.1146/annurev.micro.56.012302.160654.

Article  CAS  PubMed  Google Scholar 

Hunsperger EA, Roehrig JT. Temporal analyses of the neuropathogenesis of a west nile virus infection in mice. J Neurovirol. 2006;12:129–39. https://doi.org/10.1080/13550280600758341.

Article  CAS  PubMed  Google Scholar 

Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of west nile virus disease. Emerg Infect Dis. 2005;11:1167–73. https://doi.org/10.3201/eid1108.050289a.

Article  PubMed  PubMed Central  Google Scholar 

Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. Virology, pathology, and clinical manifestations of west nile virus disease. Emerg Infect Dis. 2005;11:1174–9. https://doi.org/10.3201/eid1108.050289b.

Article  PubMed  PubMed Central  Google Scholar 

Wong SJ, Boyle RH, Demarest VL, Woodmansee AN, Kramer LD, Li H, et al. Immunoassay targeting nonstructural protein 5 to differentiate west nile virus infection from dengue and st. louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol. 2003;41:4217–23. https://doi.org/10.1128/JCM.41.9.4217-4223.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim SP, Shi P-Y. West nile virus drug discovery. Viruses. 2013;5:2977–3006. https://doi.org/10.3390/v5122977.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu B, Ouzunov S, Wang L, Mason P, Bourne N, Cuconati A, et al. Discovery of small molecule inhibitors of west nile virus using a high-throughput sub-genomic replicon screen. Antivir Res. 2006;70:39–50. https://doi.org/10.1016/j.antiviral.2006.01.005.

Article  CAS  PubMed  Google Scholar 

Puig-Basagoiti F, Tilgner M, Forshey BM, Philpott SM, Espina NG, Wentworth DE, et al. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother. 2006;50:1320–9. https://doi.org/10.1128/aac.50.4.1320-1329.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noueiry AO, Olivo PD, Slomczynska U, Zhou Y, Buscher B, Geiss B, et al. Identification of Novel Small-Molecule Inhibitors of west nile virus infection. J Virol. 2007;81:11992–2004. https://doi.org/10.1128/jvi.01358-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samanta S, Lim TL, Lam Y. Synthesis and in vitro evaluation of west nile virus protease inhibitors based on the 2-acetamide Scaffold. ChemMedChem. 2013;8:994–1001. https://doi.org/10.1002/cmdc.201300114.

Chung DH, Jonsson CB, Maddox C, McKellip SN, Moore BP, Heil M, et al. HTS-driven discovery of new chemotypes with west nile virus inhibitory activity. Molecules. 2010;15:1690–704. https://doi.org/10.3390/molecules15031690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cregar-Hernandez L, Jiao G-S, Johnson AT, Lehrer AT, Wong TAS, Margosiak SA. Small molecule pan-dengue and west nile virus NS3 protease inhibitors. Antivir Chem Chemother. 2011;21:209–17. https://doi.org/10.3851/IMP1767.

Article  CAS  PubMed  Google Scholar 

Shiryaev SA, Cheltsov AV, Gawlik K, Ratnikov BI, Strongin AY. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase. Assay Drug Dev Technol. 2011;9:69–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nitsche C, Zhang L, Weigel LF, Schilz J, Graf D, Bartenschlager R, et al. Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J Med Chem. 2017;60:511–6. https://doi.org/10.1021/acs.jmedchem.6b01021.

Article  CAS  PubMed  Google Scholar 

Kühl N, Graf D, Bock J, Behnam MAM, Leuthold M-M, Klein CD. A new class of dengue and west nile virus protease inhibitors with submicromolar activity in reporter gene denv-2 protease and viral replication assays. J Med Chem. 2020;63:8179–97. https://doi.org/10.1021/acs.jmedchem.0c00413.

Article  CAS  PubMed  Google Scholar 

Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of dengue and west nile virus ns2b-ns3 protease display two distinct binding modes. J Med Chem. 2020;63:140–56. https://doi.org/10.1021/acs.jmedchem.9b00759.

Article  CAS  PubMed  Google Scholar 

Skoreński M, Milewska A, Pyrć K, Sieńczyk M, Oleksyszyn J. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. J Enzym Inhib Med Chem. 2019;34:8–14. https://doi.org/10.1080/14756366.2018.1506772.

Article  CAS  Google Scholar 

Aravapalli S, Lai H, Teramoto T, Alliston KR, Lushington GH, Ferguson EL, et al. Inhibitors of dengue virus and west nile virus proteases based on the aminobenzamide scaffold. Bioorg Med Chem. 2012;20:4140–8. https://doi.org/10.1016/j.bmc.2012.04.055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen DB, Eldrup AB, Bartholomew L, Bhat B, Bosserman MR, Ceccacci A, et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis c virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother. 2004;48:3944–53. https://doi.org/10.1128/AAC.48.10.3944-3953.2004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyer L, Zouharová D, Širmarová J, Fojtíková M, Štefánik M, Haviernik J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antivir Res. 2017;142:63–67. https://doi.org/10.1016/j.antiviral.2017.03.012.

Article  CAS  PubMed  Google Scholar 

Chen H, Liu L, Jones SA, Banavali N, Kass J, Li Z, et al. Selective inhibition of the west nile virus methyltransferase by nucleoside analogs. Antivir Res. 2013;97:232–9. https://doi.org/10.1016/j.antiviral.2012.12.012.

Article  CAS  PubMed  Google Scholar 

Vernekar SKV, Qiu L, Zhang J, Kankanala J, Li H, Geraghty RJ, et al. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of west nile virus and dengue virus. J Med Chem. 2015;58:4016–28. https://doi.org/10.1021/acs.jmedchem.5b00327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stahla-Beek HJ, April DG, Saeedi BJ, Hannah AM, Keenan SM, Geiss BJ. Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. J Virol. 2012;86:8730–9. https://doi.org/10.1128/jvi.00384-12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordan I, Briese T, Fischer N, Lau JY-N, Lipkin WI. Ribavirin inhibits west nile virus replication and cytopathic effect in neural cells. J Infect Dis. 2000;182:1214–7. https://doi.org/10.1086/315847.

Article  CAS  PubMed  Google Scholar 

Martinez AA, Espinosa BA, Adamek RN, Thomas BA, Chau J, Gonzalez E, et al. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor. Eur J Med Chem. 2018;157:1202–13. https://doi.org/10.1016/j.ejmech.2018.08.077.

Article  CAS  PubMed  Google Scholar 

Dragoni F, Boccuto A, Picarazzi F, Giannini A, Giammarino F, Saladini F, et al. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antivir Res. 2020;175:104708. https://doi.org/10.1016/j.antiviral.2020.104708.

Article  CAS  PubMed  Google Scholar 

Jia F, Zou G, Fan J, Yuan Z. Identification of palmatine as an inhibitor of West Nile virus. Arch Virol. 2010;155:1325–9. https://doi.org/10.1007/s00705-010-0702-4.

Article 

Comments (0)

No login
gif