Prince M, Albanese E, Guerchet M, Prina M World Alzheimer Report 2014: Dementia and Risk Reduction—An analysis of protective and modifiable risk factors. Alzheimer’s Disease International, London, 2014.
Alzheimer’s Association. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–695. https://doi.org/10.1002/alz.13016.
Kumaran KR, Yunusa S, Perimal EK, Wahab H, Müller CP, Hassan Z. Insights into the pathophysiology of Alzheimer’s disease and potential therapeutic targets: a current perspective. J Alzheimers Dis. 2023;91:507–30.
Yang Y, Lina Q. Research progress on the pathogenesis, diagnosis, and drug therapy of Alzheimer’s disease. Brain Sci. 2024;16:590. https://doi.org/10.3390/brainsci14060590.
van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.
Giacobini E, Cuello AC, Fisher A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain. 2022;145:22350–2275.
Sharma A, Rudrawar S, Bharate SB, Jadhav HR. Recent advancements in the therapeutic approaches for Alzheimer’s disease treatment: current and future perspective. RSC Med Chem. 2025;16:652–93.
Article CAS PubMed Google Scholar
Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci. 2003;4:131–8.
Article CAS PubMed Google Scholar
Mesulam MM, Geula C. Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex. 1996;6:165–77.
Mesulam MM, Geula C, Morán MA. Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol. 1987;22:683–91.
Article CAS PubMed Google Scholar
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer’s disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci. 2025;16:2105–35.
Article CAS PubMed PubMed Central Google Scholar
Nie Y, Chu C, Qin Q, Shen H, Wen L, Tang Y, et al. Lipid metabolism and oxidative stress in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Brain Pathol. 2024;34:e13202.
Article CAS PubMed Google Scholar
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024;104:103–97.
Article CAS PubMed Google Scholar
Yin F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023;290:1420–53.
Article CAS PubMed Google Scholar
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, et al. Discovery of a potent dual inhibitor of acetylcholinesterase and butyrylcholinesterase with antioxidant activity that alleviates Alzheimer-like pathology in old APP/PS1 mice. J Med Chem. 2021;64:812–39.
Article CAS PubMed Google Scholar
Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience. 2013;234:53–68.
Article CAS PubMed Google Scholar
Varadharajan A, Davis AD, Ghosh A, Jagtap T, Xavier A, Menon AJ, et al. Guidelines for pharmacotherapy in Alzheimer’s disease – a primer on FDA-approved drugs. J Neurosci Rural Pr. 2023;14:566–73.
Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Cholinesterase inhibitors in Alzheimer’s disease and Lewy body spectrum disorders: the emerging pharmacogenetic story. Hum Genomics. 2009;4:91–106.
Article CAS PubMed PubMed Central Google Scholar
Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr. 2002;14:77–91.
Elsawalhy M, Abdel-Rahman AA, Basiony EA, Ellithy SA, Hassan AA, Abou-Amra ES, et al. Novel dual acetyl- and butyrylcholinesterase inhibitors based on the pyridyl-pyridazine moiety for the potential treatment of Alzheimer’s disease. Pharmaceuticals (Basel). 2024;17:1407.
Article CAS PubMed Google Scholar
Jiang CS, Ge YX, Cheng ZQ, Wang YY, Tao HR, Zhu K, et al. Discovery of new selective butyrylcholinesterase (BChE) inhibitors with anti-Aβ aggregation activity: structure-based virtual screening, hit optimization and biological evaluation. Molecules. 2019;24:2568.
Article CAS PubMed PubMed Central Google Scholar
Darvesh S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr Alzheimer Res. 2016;13:1173–7.
Article CAS PubMed Google Scholar
Zhou S, Yuan Y, Zheng F, Zhan CG. Structure-based virtual screening leading to discovery of highly selective butyrylcholinesterase inhibitors with solanaceous alkaloid scaffolds. Chem Biol Interact. 2019;308:372–6.
Article CAS PubMed PubMed Central Google Scholar
Bolognesi ML, Bartolini M, Cavalli A, Andrisano V, Rosini M, Minarini A. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem. 2004;47:5945–52.
Article CAS PubMed Google Scholar
Darras FH, Kling B, Heilmann J, Decker M. Neuroprotective tri- and tetracyclic BChE inhibitors releasing reversible inhibitors upon carbamate transfer. ACS Med Chem Lett. 2012;3:914–9.
Article CAS PubMed PubMed Central Google Scholar
Mohamed LW, El-Yamany MF. Design and synthesis of novel 1,4-benzodiazepine derivatives and their biological evaluation as cholinesterase inhibitors. Arch Pharm Res. 2012;35:1369–77.
Article CAS PubMed Google Scholar
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev. 2011;35:1397–409.
Article CAS PubMed Google Scholar
Smith SG, Sanchez R, Zhou MM. Privileged diazepine compounds and their emergence as bromodomain inhibitors. Chem Biol. 2014;21:573–83.
Article CAS PubMed PubMed Central Google Scholar
Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm. 1961;7:88–95.
Article CAS PubMed Google Scholar
Darras FH, Pockes S, Huang G, Wehle S, Strasser A, Wittmann H-J, et al. Synthesis, biological evaluation, and computational studies of tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists. ACS Chem Neurosci. 2014;5:225–42.
Article CAS PubMed PubMed Central Google Scholar
Amitai G, Moorad D, Adani R, Doctor BP. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem Pharm. 1998;56:293–9.
Article CAS PubMed Google Scholar
Pidany F, Kroustkova J, Al Mamun A, Suchankova D, Brazzolotto X, Nachon F, et al. Highly selective butyrylcholinesterase inhibitors related to Amaryllidaceae alkaloids: design, synthesis, and biological evaluation. Eur J Med Chem. 2023;252:115301.
Article CAS PubMed Google Scholar
Hoffmann M, Stiller C, Endres E, Scheiner M, Gunesch S, Sotriffer C, et al. Highly
Comments (0)