Glutathione transferases in cats and dogs: diversity, structure, and function

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharm Toxicol. 2005;45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.

Article  CAS  Google Scholar 

Sharma RA, GAS; Awasthi, YC Physiological substrates of glutathione S-transferases. In: YC A, editor. Toxicology of glutathione transferases. Boca Raton (FL): Taylor & Francis; 2007.

Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta. 2013;1830:3267–88. https://doi.org/10.1016/j.bbagen.2012.11.019.

Article  CAS  PubMed  Google Scholar 

Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev. 1995;47:271–330.

Article  CAS  PubMed  Google Scholar 

Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics. 2004;1:460–4. https://doi.org/10.1186/1479-7364-1-6-460.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu B, Dong D. Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharm Sci. 2012;33:656–68. https://doi.org/10.1016/j.tips.2012.09.007.

Article  CAS  PubMed  Google Scholar 

Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2011;43:92–137. https://doi.org/10.3109/03602532.2011.567391.

Article  CAS  PubMed  Google Scholar 

Bousova I, Skalova L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev. 2012;44:267–86. https://doi.org/10.3109/03602532.2012.713969.

Article  CAS  PubMed  Google Scholar 

Geroni C, Marchini S, Cozzi P, Galliera E, Ragg E, Colombo T, et al. Brostallicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione. Cancer Res. 2002;62:2332–6.

CAS  PubMed  Google Scholar 

Moden O, Mannervik B. Glutathione transferases in the bioactivation of azathioprine. Adv Cancer Res. 2014;122:199–244. https://doi.org/10.1016/B978-0-12-420117-0.00006-2.

Article  CAS  PubMed  Google Scholar 

Ciaccio PJ, Tew KD, LaCreta FP. The spontaneous and glutathione S-transferase-mediated reaction of chlorambucil with glutathione. Cancer Commun. 1990;2:279–85. https://doi.org/10.3727/095535490820874263.

Article  CAS  PubMed  Google Scholar 

Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996;24:1015–9.

Article  CAS  PubMed  Google Scholar 

Lien S, Larsson AK, Mannervik B. The polymorphic human glutathione transferase T1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem Pharm. 2002;63:191–7. https://doi.org/10.1016/s0006-2952(01)00846-2.

Article  CAS  PubMed  Google Scholar 

Paumi CM, Ledford BG, Smitherman PK, Townsend AJ, Morrow CS. Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance. Kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J Biol Chem. 2001;276:7952–6. https://doi.org/10.1074/jbc.M009400200.

Article  CAS  PubMed  Google Scholar 

Townsend D, Tew K. Cancer drugs, genetic variation and the glutathione-S-transferase gene family. Am J Pharmacogenomics. 2003;3:157–72. https://doi.org/10.2165/00129785-200303030-00002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu JH, Batist G. Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 2013;1830:3350–3. https://doi.org/10.1016/j.bbagen.2012.11.016.

Article  CAS  PubMed  Google Scholar 

Mohana K, Achary A. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab Rev. 2017;49:318–37. https://doi.org/10.1080/03602532.2017.1343343.

Article  PubMed  Google Scholar 

Axarli I, Labrou NE, Petrou C, Rassias N, Cordopatis P, Clonis YD. Sulphonamide-based bombesin prodrug analogues for glutathione transferase, useful in targeted cancer chemotherapy. Eur J Med Chem. 2009;44:2009–16. https://doi.org/10.1016/j.ejmech.2008.10.009.

Article  CAS  PubMed  Google Scholar 

van Gisbergen MW, Cebula M, Zhang J, Ottosson-Wadlund A, Dubois L, Lambin P, et al. Chemical reactivity window determines prodrug efficiency toward glutathione transferase overexpressing cancer cells. Mol Pharm. 2016;13:2010–25. https://doi.org/10.1021/acs.molpharmaceut.6b00140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ang WH, Khalaila I, Allardyce CS, Juillerat-Jeanneret L, Dyson PJ. Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J Am Chem Soc. 2005;127:1382–3. https://doi.org/10.1021/ja0432618.

Article  CAS  PubMed  Google Scholar 

Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10:307–17. https://doi.org/10.1038/nrd3410.

Article  CAS  PubMed  Google Scholar 

Huang F, Han X, Xiao X, Zhou J. Covalent warheads targeting cysteine residue: the promising approach in drug development. Molecules. 2022;27:7728 https://doi.org/10.3390/molecules27227728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shibata Y, Chiba M. The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib. Drug Metab Dispos. 2015;43:375–84. https://doi.org/10.1124/dmd.114.061424.

Article  CAS  PubMed  Google Scholar 

Dahal UP, Rock BM, Rodgers J, Shen X, Wang Z, Wahlstrom JL. Absorption, distribution, metabolism, and excretion of [(14)C]-Sotorasib in rats and dogs: interspecies differences in absorption, protein conjugation and metabolism. Drug Metab Dispos. 2022;50:600–12. https://doi.org/10.1124/dmd.121.000798.

Article  CAS  PubMed  Google Scholar 

Trepanier LA, Cribb AE, Spielberg SP, Ray K. Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics. 1998;8:169–79. https://doi.org/10.1097/00008571-199804000-00009.

Article  CAS  PubMed  Google Scholar 

Trepanier LA, Ray K, Winand NJ, Spielberg SP, Cribb AE. Cytosolic arylamine N-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochem Pharm. 1997;54:73–80. https://doi.org/10.1016/s0006-2952(97)00140-8.

Article  CAS  PubMed  Google Scholar 

Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pr. 2013;43:1039–54. https://doi.org/10.1016/j.cvsm.2013.05.002.

Article  Google Scholar 

Court MH, Greenblatt DJ. Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms. Pharmacogenetics. 2000;10:355–69. https://doi.org/10.1097/00008571-200006000-00009.

Article  CAS  PubMed  Google Scholar 

Foster AP, Shaw SE, Duley JA, Shobowale-Bakre EM, Harbour DA. Demonstration of thiopurine methyltransferase activity in the erythrocytes of cats. J Vet Intern Med. 2000;14:552–4. 10.1892/0891-6640(2000)014<0552:dotmai>2.3.co;2.

Article  CAS 

Comments (0)

No login
gif