Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharm Toxicol. 2005;45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.
Sharma RA, GAS; Awasthi, YC Physiological substrates of glutathione S-transferases. In: YC A, editor. Toxicology of glutathione transferases. Boca Raton (FL): Taylor & Francis; 2007.
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta. 2013;1830:3267–88. https://doi.org/10.1016/j.bbagen.2012.11.019.
Article CAS PubMed Google Scholar
Commandeur JN, Stijntjes GJ, Vermeulen NP. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev. 1995;47:271–330.
Article CAS PubMed Google Scholar
Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics. 2004;1:460–4. https://doi.org/10.1186/1479-7364-1-6-460.
Article CAS PubMed PubMed Central Google Scholar
Wu B, Dong D. Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharm Sci. 2012;33:656–68. https://doi.org/10.1016/j.tips.2012.09.007.
Article CAS PubMed Google Scholar
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2011;43:92–137. https://doi.org/10.3109/03602532.2011.567391.
Article CAS PubMed Google Scholar
Bousova I, Skalova L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev. 2012;44:267–86. https://doi.org/10.3109/03602532.2012.713969.
Article CAS PubMed Google Scholar
Geroni C, Marchini S, Cozzi P, Galliera E, Ragg E, Colombo T, et al. Brostallicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione. Cancer Res. 2002;62:2332–6.
Moden O, Mannervik B. Glutathione transferases in the bioactivation of azathioprine. Adv Cancer Res. 2014;122:199–244. https://doi.org/10.1016/B978-0-12-420117-0.00006-2.
Article CAS PubMed Google Scholar
Ciaccio PJ, Tew KD, LaCreta FP. The spontaneous and glutathione S-transferase-mediated reaction of chlorambucil with glutathione. Cancer Commun. 1990;2:279–85. https://doi.org/10.3727/095535490820874263.
Article CAS PubMed Google Scholar
Czerwinski M, Gibbs JP, Slattery JT. Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996;24:1015–9.
Article CAS PubMed Google Scholar
Lien S, Larsson AK, Mannervik B. The polymorphic human glutathione transferase T1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. Biochem Pharm. 2002;63:191–7. https://doi.org/10.1016/s0006-2952(01)00846-2.
Article CAS PubMed Google Scholar
Paumi CM, Ledford BG, Smitherman PK, Townsend AJ, Morrow CS. Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance. Kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J Biol Chem. 2001;276:7952–6. https://doi.org/10.1074/jbc.M009400200.
Article CAS PubMed Google Scholar
Townsend D, Tew K. Cancer drugs, genetic variation and the glutathione-S-transferase gene family. Am J Pharmacogenomics. 2003;3:157–72. https://doi.org/10.2165/00129785-200303030-00002.
Article CAS PubMed PubMed Central Google Scholar
Wu JH, Batist G. Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 2013;1830:3350–3. https://doi.org/10.1016/j.bbagen.2012.11.016.
Article CAS PubMed Google Scholar
Mohana K, Achary A. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab Rev. 2017;49:318–37. https://doi.org/10.1080/03602532.2017.1343343.
Axarli I, Labrou NE, Petrou C, Rassias N, Cordopatis P, Clonis YD. Sulphonamide-based bombesin prodrug analogues for glutathione transferase, useful in targeted cancer chemotherapy. Eur J Med Chem. 2009;44:2009–16. https://doi.org/10.1016/j.ejmech.2008.10.009.
Article CAS PubMed Google Scholar
van Gisbergen MW, Cebula M, Zhang J, Ottosson-Wadlund A, Dubois L, Lambin P, et al. Chemical reactivity window determines prodrug efficiency toward glutathione transferase overexpressing cancer cells. Mol Pharm. 2016;13:2010–25. https://doi.org/10.1021/acs.molpharmaceut.6b00140.
Article CAS PubMed PubMed Central Google Scholar
Ang WH, Khalaila I, Allardyce CS, Juillerat-Jeanneret L, Dyson PJ. Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J Am Chem Soc. 2005;127:1382–3. https://doi.org/10.1021/ja0432618.
Article CAS PubMed Google Scholar
Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov. 2011;10:307–17. https://doi.org/10.1038/nrd3410.
Article CAS PubMed Google Scholar
Huang F, Han X, Xiao X, Zhou J. Covalent warheads targeting cysteine residue: the promising approach in drug development. Molecules. 2022;27:7728 https://doi.org/10.3390/molecules27227728.
Article CAS PubMed PubMed Central Google Scholar
Shibata Y, Chiba M. The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib. Drug Metab Dispos. 2015;43:375–84. https://doi.org/10.1124/dmd.114.061424.
Article CAS PubMed Google Scholar
Dahal UP, Rock BM, Rodgers J, Shen X, Wang Z, Wahlstrom JL. Absorption, distribution, metabolism, and excretion of [(14)C]-Sotorasib in rats and dogs: interspecies differences in absorption, protein conjugation and metabolism. Drug Metab Dispos. 2022;50:600–12. https://doi.org/10.1124/dmd.121.000798.
Article CAS PubMed Google Scholar
Trepanier LA, Cribb AE, Spielberg SP, Ray K. Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics. 1998;8:169–79. https://doi.org/10.1097/00008571-199804000-00009.
Article CAS PubMed Google Scholar
Trepanier LA, Ray K, Winand NJ, Spielberg SP, Cribb AE. Cytosolic arylamine N-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochem Pharm. 1997;54:73–80. https://doi.org/10.1016/s0006-2952(97)00140-8.
Article CAS PubMed Google Scholar
Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pr. 2013;43:1039–54. https://doi.org/10.1016/j.cvsm.2013.05.002.
Court MH, Greenblatt DJ. Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms. Pharmacogenetics. 2000;10:355–69. https://doi.org/10.1097/00008571-200006000-00009.
Article CAS PubMed Google Scholar
Foster AP, Shaw SE, Duley JA, Shobowale-Bakre EM, Harbour DA. Demonstration of thiopurine methyltransferase activity in the erythrocytes of cats. J Vet Intern Med. 2000;14:552–4. 10.1892/0891-6640(2000)014<0552:dotmai>2.3.co;2.
Comments (0)