Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, et al. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep. 2021;38:130–239. https://doi.org/10.1039/D0NP00027B.
Süssmuth RD, Mainz A. Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Ed. 2017;56:3770–821. https://doi.org/10.1002/anie.201609079.
Cao L, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020;370:426–31. https://doi.org/10.1126/science.abd9909.
Article CAS PubMed PubMed Central Google Scholar
Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein–protein interactions. Curr Opin Struct Biol. 2017;44:59–66. https://doi.org/10.1016/j.sbi.2016.12.009.
Article CAS PubMed PubMed Central Google Scholar
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein–protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci. 2021;12:5977–93. https://doi.org/10.1039/D1SC00165E.
Article CAS PubMed PubMed Central Google Scholar
Cao R, Li J, Liao Q, Shao M, Zhang Q, Zhang Y, et al. Enhanced bioactivity of natural products by halogenation: a database survey and quantum chemistry calculation study. J Med Chem. 2025;68:10486–96. https://doi.org/10.1021/acs.jmedchem.5c00944.
Article CAS PubMed Google Scholar
Gribble GW. A survey of recently discovered naturally occurring organohalogen compounds. J Nat Prod. 2024;87:1285–305. https://doi.org/10.1021/acs.jnatprod.3c00803.
Article CAS PubMed Google Scholar
Böhringer N, Kramer J-C, de la Mora E, Padva L, Wuisan ZG, Liu Y, et al. Genome- and metabolome-guided discovery of marine BamA inhibitors revealed a dedicated darobactin halogenase. Cell Chem Biol. 2023;30:943–52.e7. https://doi.org/10.1016/j.chembiol.2023.06.011.
Article CAS PubMed Google Scholar
Maffioli SI, Iorio M, Sosio M, Monciardini P, Gaspari E, Donadio S. Characterization of the Congeners in the Lantibiotic NAI-107 Complex. J Nat Prod. 2014;77:79–84. https://doi.org/10.1021/np400702t.
Article CAS PubMed Google Scholar
Cruz JC, Iorio M, Monciardini P, Simone M, Brunati C, Gaspari E, et al. Brominated variant of the lantibiotic NAI-107 with enhanced antibacterial potency. J Nat Prod. 2015;78:2642–7. https://doi.org/10.1021/acs.jnatprod.5b00576.
Article CAS PubMed Google Scholar
Pinchman JR, Boger DL. Investigation into the functional impact of the vancomycin C-ring aryl chloride. Bioorg Med Chem Lett. 2013;23:4817–9. https://doi.org/10.1016/j.bmcl.2013.06.080.
Article CAS PubMed PubMed Central Google Scholar
Pinchman JR, Boger DL. Probing the role of the vancomycin e-ring aryl chloride: selective divergent synthesis and evaluation of alternatively substituted E-ring analogues. J Med Chem. 2013;56:4116–24. https://doi.org/10.1021/jm4004494.
Article CAS PubMed PubMed Central Google Scholar
Gerhard U, Mackay JP, Maplestone RA, Williams DH. The role of the sugar and chlorine substituents in the dimerization of vancomycin antibiotics. J Am Chem Soc. 1993;115:232–7. https://doi.org/10.1021/ja00054a033.
Lin Y-C, Schneider F, Eberle KJ, Chiodi D, Nakamura H, Reisberg SH, et al. Atroposelective total synthesis of Darobactin A. J Am Chem Soc. 2022;144:14458–62. https://doi.org/10.1021/jacs.2c05892.
Article CAS PubMed PubMed Central Google Scholar
Nesic M, Ryffel DB, Maturano J, Shevlin M, Pollack SR, Gauthier DR Jr., et al. Total synthesis of Darobactin A. J Am Chem Soc. 2022;144:14026–30. https://doi.org/10.1021/jacs.2c05891.
Article CAS PubMed Google Scholar
Noisier AFM, Brimble MA. C–H functionalization in the synthesis of amino acids and peptides. Chem Rev. 2014;114:8775–806. https://doi.org/10.1021/cr500200x.
Article CAS PubMed Google Scholar
Moore MJ, Qu S, Tan C, Cai Y, Mogi Y, Jamin Keith D, et al. Next-generation total synthesis of vancomycin. J Am Chem Soc. 2020;142:16039–50. https://doi.org/10.1021/jacs.0c07433.
Article CAS PubMed PubMed Central Google Scholar
Fraley AE, Sherman DH. Halogenase engineering and its utility in medicinal chemistry. Bioorg Med Chem Lett. 2018;28:1992–9. https://doi.org/10.1016/j.bmcl.2018.04.066.
Article CAS PubMed PubMed Central Google Scholar
Hegarty E, Büchler J, Buller RM. Halogenases for the synthesis of small molecules. Curr Opin Green Sustain Chem. 2023;41:100784. https://doi.org/10.1016/j.cogsc.2023.100784.
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of halogenase enzymes for use in synthesis. Chem Rev. 2018;118:232–69. https://doi.org/10.1021/acs.chemrev.7b00032.
Article CAS PubMed Google Scholar
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, et al. Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chem Soc Rev. 2021;50:9443–81. https://doi.org/10.1039/D0CS01551B.
Article CAS PubMed PubMed Central Google Scholar
Voitsekhovskaia I, Ho YTC, Klatt C, Müller A, Machell DL, Tan YJ, et al. Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues. RSC Chem Biol. 2024;5:1017–34. https://doi.org/10.1039/D4CB00140K.
Article CAS PubMed PubMed Central Google Scholar
Schmartz PC, Zerbe K, Abou-Hadeed K, Robinson JA. Bis-chlorination of a hexapeptide-PCP conjugate by the halogenase involved in vancomycin biosynthesis. Org Biomol Chem. 2014;12:5574–7. https://doi.org/10.1039/c4ob00474d.
Article CAS PubMed Google Scholar
Kittilä T, Kittel C, Tailhades J, Butz D, Schoppet M, Büttner A, et al. Halogenation of glycopeptide antibiotics occurs at the amino acid level during non-ribosomal peptide synthesis. Chem Sci. 2017;8:5992–6004. https://doi.org/10.1039/C7SC00460E.
Article PubMed PubMed Central Google Scholar
Yi D, Acharya A, Gumbart JC, Gutekunst WR, Agarwal V. Gatekeeping ketosynthases dictate initiation of assembly line biosynthesis of pyrrolic polyketides. J Am Chem Soc. 2021;143:7617–22. https://doi.org/10.1021/jacs.1c02371.
Article CAS PubMed Google Scholar
Jiang W, Heemstra JR Jr., Forseth RR, Neumann CS, Manaviazar S, Schroeder FC, et al. Biosynthetic chlorination of the piperazate residue in kutzneride biosynthesis by KthP. Biochemistry. 2011;50:6063–72. https://doi.org/10.1021/bi200656k.
Article CAS PubMed Google Scholar
Neumann CS, Walsh CT. Biosynthesis of (−)-(1S,2R)-Allocoronamic Acyl Thioester by an FeII-Dependent Halogenase and a Cyclopropane-Forming Flavoprotein. J Am Chem Soc. 2008;130:14022–3. https://doi.org/10.1021/ja8064667.
Comments (0)