Targeting mGluR7 in Parkinson’s disease: a novel approach to neuroprotection and synaptic therapies

Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34. https://doi.org/10.1016/j.coph.2014.11.001

Article  PubMed  CAS  Google Scholar 

Bennett KA, Christopher JA, Tehan BG (2020) Structure-based discovery and development of metabotropic glutamate receptor 5 negative allosteric modulators. Adv Pharmacol 88:35–58. https://doi.org/10.1016/bs.apha.2020.03.001

Article  PubMed  CAS  Google Scholar 

Beske PH (2012) The role of NADPH oxidase in ischemia/reperfusion-induced alterations to AMPA receptor trafficking and NMDA receptor function. PhD thesis, University of Montana

Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E (2020) The modulation of pain by metabotropic glutamate receptors 7 and 8 in the dorsal striatum. Curr Neuropharmacol 18(1):34–50. https://doi.org/10.2174/1570159X17666190618121859

Article  PubMed  PubMed Central  CAS  Google Scholar 

Broadstock M, Austin PJ, Betts MJ, Duty S (2012) Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol 165(4b):1034–1045. https://doi.org/10.1111/j.1476-5381.2011.01515.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Campanelli F, Natale G, Marino G, Ghiglieri V, Calabresi P (2022) Striatal glutamatergic hyperactivity in Parkinson’s disease. Neurobiol Dis 168:105697. https://doi.org/10.1016/j.nbd.2022.105697

Article  PubMed  CAS  Google Scholar 

Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K (2013) Glutamate in Parkinson’s disease: role of antiglutamatergic drugs. Basal Ganglia 3(3):147–157. https://doi.org/10.1016/j.baga.2013.09.001

Article  Google Scholar 

Cheng XT, Huang N, Sheng ZH (2022) Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110(12):1899–1923. https://doi.org/10.1016/j.neuron.2022.03.015

Article  PubMed  PubMed Central  CAS  Google Scholar 

Çınar E, Tel BC, Şahin G (2022) Neuroinflammation in Parkinson’s disease and its treatment opportunities. Balkan Med J 39(5):318. https://doi.org/10.4274/balkanmedj.galenos.2022.2022-7-100

Article  PubMed  PubMed Central  CAS  Google Scholar 

ClinicalTrials.gov. Study of Drug X in Parkinson’s Disease (NCT03998787). https://clinicaltrials.gov/ct2/show/NCT03998787 . Accessed July 30, 2025.

Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:20. https://doi.org/10.3389/fnmol.2019.00020

Article  PubMed  PubMed Central  CAS  Google Scholar 

David HN, Abraini JH (2002) Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur J Neurosci 15(5):869–875. https://doi.org/10.1046/j.1460-9568.2002.01919.x

Article  PubMed  Google Scholar 

Delcambre S, Nonnenmacher Y, Hiller K (2016) Dopamine metabolism and reactive oxygen species production. In: Buhlman L (ed) Mitochondrial mechanisms of degeneration and repair in Parkinson’s disease. Springer, Cham, pp 25–47. https://doi.org/10.1007/978-3-319-42139-1_2

Chapter  Google Scholar 

Domin H (2022) Group III metabotropic glutamate receptors as promising targets for neuroprotective therapy: Particular emphasis on the role of mGlu4 and mGlu7 receptors. Pharmacol Biochem Behav 219:173452. https://doi.org/10.1016/j.pbb.2022.173452

Article  PubMed  CAS  Google Scholar 

Domin H, Burnat G (2024) MGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 76(6):1219–1241. https://doi.org/10.1007/s43440-024-00657-7

Article  PubMed  PubMed Central  Google Scholar 

Fisher NM, Seto M, Lindsley CW, Niswender CM (2018) Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders. Front Mol Neurosci 11:387. https://doi.org/10.3389/fnmol.2018.00387

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V (2003) Neuroprotective activity of metabotropic glutamate receptor ligands. In: Wouters R, Vandesande F, De Deyn PP (eds) Molecular and cellular biology of neuroprotection in the CNS. Springer, Cham, pp 197–223

Chapter  Google Scholar 

Gu Z, Liu W, Wei J, Yan Z (2012) Regulation of N-methyl-D-aspartic acid (NMDA) receptors by metabotropic glutamate receptor 7. J Biol Chem 287(13):10265–10275. https://doi.org/10.1074/jbc.M111.325175

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guan L, Lin L, Ma C, Qiu L (2025) Decoding crosstalk between neurotransmitters and α-synuclein in Parkinson’s disease: pathogenesis and therapeutic implications. Ther Adv Neurol Disord 18:17562864251339896. https://doi.org/10.1177/17562864251339895

Article  PubMed  PubMed Central  Google Scholar 

Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74(5):271–300. https://doi.org/10.1016/j.pneurobio.2004.09.001

Article  PubMed  CAS  Google Scholar 

Gyetvai BM, Vadasz C (2025) Pleiotropic effects of Grm7/GRM7 in shaping neurodevelopmental pathways and the neural substrate of complex behaviors and disorders. Biomolecules 15(3):392. https://doi.org/10.3390/biom15030392

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364. https://doi.org/10.1016/j.tins.2007.05.004

Article  PubMed  CAS  Google Scholar 

Hámor PU, Schwendt M (2021) Metabotropic glutamate receptor trafficking and its role in drug-induced neurobehavioral plasticity. Brain Plast 7(2):61–76. https://doi.org/10.3233/BPL-210120

Article  PubMed  PubMed Central  Google Scholar 

Hauser JL, Edson EB, Hooks BM, Chen C (2012) Articles in PresS. J Neurophysiol. https://doi.org/10.1152/jn.00897.2012

Article  PubMed  PubMed Central  Google Scholar 

Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ (2023) Substantia nigra pars reticulata projections to the pedunculopontine nucleus modulate dyskinesia. Mov Disord 38(10):1850–1860. https://doi.org/10.1002/mds.29558

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hunjan G, Aran KR (2025) Role of mGluR7 in Alzheimer’s disease: pathophysiological insights and therapeutic approaches. Inflammopharmacology. https://doi.org/10.1007/s10787-025-01765-3

Article  PubMed  Google Scholar 

Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jphs.2020.07.011

Article  PubMed  CAS  Google Scholar 

Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T (2023) Microglia mediated neuroinflammation in Parkinson’s disease. Cells 12(7):1012. https://doi.org/10.3390/cells12071012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jalan-Sakrikar N, Field JR, Klar R, Mattmann ME, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL, Lewis LM (2014) Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 5(12):1221–1237. https://doi.org/10.1021/cn500153z

Article  PubMed  CAS  Google Scholar 

Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045

Comments (0)

No login
gif