Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34. https://doi.org/10.1016/j.coph.2014.11.001
Article PubMed CAS Google Scholar
Bennett KA, Christopher JA, Tehan BG (2020) Structure-based discovery and development of metabotropic glutamate receptor 5 negative allosteric modulators. Adv Pharmacol 88:35–58. https://doi.org/10.1016/bs.apha.2020.03.001
Article PubMed CAS Google Scholar
Beske PH (2012) The role of NADPH oxidase in ischemia/reperfusion-induced alterations to AMPA receptor trafficking and NMDA receptor function. PhD thesis, University of Montana
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E (2020) The modulation of pain by metabotropic glutamate receptors 7 and 8 in the dorsal striatum. Curr Neuropharmacol 18(1):34–50. https://doi.org/10.2174/1570159X17666190618121859
Article PubMed PubMed Central CAS Google Scholar
Broadstock M, Austin PJ, Betts MJ, Duty S (2012) Antiparkinsonian potential of targeting group III metabotropic glutamate receptor subtypes in the rodent substantia nigra pars reticulata. Br J Pharmacol 165(4b):1034–1045. https://doi.org/10.1111/j.1476-5381.2011.01515.x
Article PubMed PubMed Central CAS Google Scholar
Campanelli F, Natale G, Marino G, Ghiglieri V, Calabresi P (2022) Striatal glutamatergic hyperactivity in Parkinson’s disease. Neurobiol Dis 168:105697. https://doi.org/10.1016/j.nbd.2022.105697
Article PubMed CAS Google Scholar
Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K (2013) Glutamate in Parkinson’s disease: role of antiglutamatergic drugs. Basal Ganglia 3(3):147–157. https://doi.org/10.1016/j.baga.2013.09.001
Cheng XT, Huang N, Sheng ZH (2022) Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110(12):1899–1923. https://doi.org/10.1016/j.neuron.2022.03.015
Article PubMed PubMed Central CAS Google Scholar
Çınar E, Tel BC, Şahin G (2022) Neuroinflammation in Parkinson’s disease and its treatment opportunities. Balkan Med J 39(5):318. https://doi.org/10.4274/balkanmedj.galenos.2022.2022-7-100
Article PubMed PubMed Central CAS Google Scholar
ClinicalTrials.gov. Study of Drug X in Parkinson’s Disease (NCT03998787). https://clinicaltrials.gov/ct2/show/NCT03998787 . Accessed July 30, 2025.
Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:20. https://doi.org/10.3389/fnmol.2019.00020
Article PubMed PubMed Central CAS Google Scholar
David HN, Abraini JH (2002) Group III metabotropic glutamate receptors and D1-like and D2-like dopamine receptors interact in the rat nucleus accumbens to influence locomotor activity. Eur J Neurosci 15(5):869–875. https://doi.org/10.1046/j.1460-9568.2002.01919.x
Delcambre S, Nonnenmacher Y, Hiller K (2016) Dopamine metabolism and reactive oxygen species production. In: Buhlman L (ed) Mitochondrial mechanisms of degeneration and repair in Parkinson’s disease. Springer, Cham, pp 25–47. https://doi.org/10.1007/978-3-319-42139-1_2
Domin H (2022) Group III metabotropic glutamate receptors as promising targets for neuroprotective therapy: Particular emphasis on the role of mGlu4 and mGlu7 receptors. Pharmacol Biochem Behav 219:173452. https://doi.org/10.1016/j.pbb.2022.173452
Article PubMed CAS Google Scholar
Domin H, Burnat G (2024) MGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 76(6):1219–1241. https://doi.org/10.1007/s43440-024-00657-7
Article PubMed PubMed Central Google Scholar
Fisher NM, Seto M, Lindsley CW, Niswender CM (2018) Metabotropic glutamate receptor 7: a new therapeutic target in neurodevelopmental disorders. Front Mol Neurosci 11:387. https://doi.org/10.3389/fnmol.2018.00387
Article PubMed PubMed Central CAS Google Scholar
Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V (2003) Neuroprotective activity of metabotropic glutamate receptor ligands. In: Wouters R, Vandesande F, De Deyn PP (eds) Molecular and cellular biology of neuroprotection in the CNS. Springer, Cham, pp 197–223
Gu Z, Liu W, Wei J, Yan Z (2012) Regulation of N-methyl-D-aspartic acid (NMDA) receptors by metabotropic glutamate receptor 7. J Biol Chem 287(13):10265–10275. https://doi.org/10.1074/jbc.M111.325175
Article PubMed PubMed Central CAS Google Scholar
Guan L, Lin L, Ma C, Qiu L (2025) Decoding crosstalk between neurotransmitters and α-synuclein in Parkinson’s disease: pathogenesis and therapeutic implications. Ther Adv Neurol Disord 18:17562864251339896. https://doi.org/10.1177/17562864251339895
Article PubMed PubMed Central Google Scholar
Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74(5):271–300. https://doi.org/10.1016/j.pneurobio.2004.09.001
Article PubMed CAS Google Scholar
Gyetvai BM, Vadasz C (2025) Pleiotropic effects of Grm7/GRM7 in shaping neurodevelopmental pathways and the neural substrate of complex behaviors and disorders. Biomolecules 15(3):392. https://doi.org/10.3390/biom15030392
Article PubMed PubMed Central CAS Google Scholar
Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364. https://doi.org/10.1016/j.tins.2007.05.004
Article PubMed CAS Google Scholar
Hámor PU, Schwendt M (2021) Metabotropic glutamate receptor trafficking and its role in drug-induced neurobehavioral plasticity. Brain Plast 7(2):61–76. https://doi.org/10.3233/BPL-210120
Article PubMed PubMed Central Google Scholar
Hauser JL, Edson EB, Hooks BM, Chen C (2012) Articles in PresS. J Neurophysiol. https://doi.org/10.1152/jn.00897.2012
Article PubMed PubMed Central Google Scholar
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ (2023) Substantia nigra pars reticulata projections to the pedunculopontine nucleus modulate dyskinesia. Mov Disord 38(10):1850–1860. https://doi.org/10.1002/mds.29558
Article PubMed PubMed Central CAS Google Scholar
Hunjan G, Aran KR (2025) Role of mGluR7 in Alzheimer’s disease: pathophysiological insights and therapeutic approaches. Inflammopharmacology. https://doi.org/10.1007/s10787-025-01765-3
Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144(3):151–164. https://doi.org/10.1016/j.jphs.2020.07.011
Article PubMed CAS Google Scholar
Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T (2023) Microglia mediated neuroinflammation in Parkinson’s disease. Cells 12(7):1012. https://doi.org/10.3390/cells12071012
Article PubMed PubMed Central CAS Google Scholar
Jalan-Sakrikar N, Field JR, Klar R, Mattmann ME, Gregory KJ, Zamorano R, Engers DW, Bollinger SR, Weaver CD, Days EL, Lewis LM (2014) Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 5(12):1221–1237. https://doi.org/10.1021/cn500153z
Article PubMed CAS Google Scholar
Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045
Comments (0)