Zarębska M, Bajkacz S. Poly– and perfluoroalkyl substances (PFAS) - recent advances in the aquatic environment analysis. TrAC Trends Anal Chem. 2023;163:117062. https://doi.org/10.1016/j.trac.2023.117062.
Gagliano E, Sgroi M, Falciglia PP, Vagliasindi FGA, Roccaro P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020;171:115381. https://doi.org/10.1016/j.watres.2019.115381.
Article CAS PubMed Google Scholar
Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP, Sunderland EM. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ Sci Technol Lett. 2016;3:344–50. https://doi.org/10.1021/acs.estlett.6b00260.
Article CAS PubMed PubMed Central Google Scholar
Lenka SP, Kah M, Padhye LP. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 2021;199:117187. https://doi.org/10.1016/j.watres.2021.117187.
Article CAS PubMed Google Scholar
Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environ Res. 2019;177:108648. https://doi.org/10.1016/j.envres.2019.108648.
Article CAS PubMed Google Scholar
Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29:131–47. https://doi.org/10.1038/s41370-018-0094-1.
Article CAS PubMed Google Scholar
Ruan Y, Lalwani D, Kwok KY, Yamazaki E, Taniyasu S, Kumar NJI, Lam PKS, Yamashita N. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair – The first nationwide survey in India. Chemosphere. 2019;229:366–73. https://doi.org/10.1016/j.chemosphere.2019.04.195.
Article CAS PubMed Google Scholar
Jian J-M, Guo Y, Zeng L, Liang-Ying L, Lu X, Wang F, Zeng EY. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review. Environ Int. 2017;108:51–62. https://doi.org/10.1016/j.envint.2017.07.024.
Article CAS PubMed Google Scholar
Weiss JM, Andersson PL, Lamoree MH, Leonards PEG, van Leeuwen SPJ, Hamers T. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci. 2009;109:206–16. https://doi.org/10.1093/toxsci/kfp055.
Article CAS PubMed Google Scholar
Carlier MP, Cenijn PH, Baygildiev T, Irwan J, Escher SE, van Duursen MBM, Hamers T. Profiling the endocrine-disrupting properties of triazines, triazoles, and short-chain PFAS. Toxicol Sci. 2024;202:250–64. https://doi.org/10.1093/toxsci/kfae131.
Article CAS PubMed PubMed Central Google Scholar
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol. 2024;98:3381–95. https://doi.org/10.1007/s00204-024-03814-2.
Article CAS PubMed PubMed Central Google Scholar
Wagenaars F, Cenijn P, Chen Z, Meima M, Scholze M, Hamers T. Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4. Arch Toxicol. 2024;98:3019–34. https://doi.org/10.1007/s00204-024-03787-2.
Article CAS PubMed PubMed Central Google Scholar
Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ Int. 2020;134:105244. https://doi.org/10.1016/j.envint.2019.105244.
Article CAS PubMed Google Scholar
Rand AA, Mabury SA. Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology. 2017;375:28–36. https://doi.org/10.1016/j.tox.2016.11.011.
Article CAS PubMed Google Scholar
Brendel S, Fetter É, Staude C, Vierke L, Biegel-Engler A. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environ Sci Eur. 2018;30:9. https://doi.org/10.1186/s12302-018-0134-4.
Article CAS PubMed PubMed Central Google Scholar
Arp HPH, Gredelj A, Glüge J, Scheringer M, Cousins IT. The global threat from the irreversible accumulation of Trifluoroacetic Acid (TFA). Environ Sci Technol. 2024;58:19925–35. https://doi.org/10.1021/acs.est.4c06189.
Article CAS PubMed PubMed Central Google Scholar
Liang S-H, Steimling JA, Chang M. Analysis of ultrashort-chain and short-chain (C1 to C4) per- and polyfluorinated substances in potable and non-potable waters. J Chromatogr Open. 2023;4:100098. https://doi.org/10.1016/j.jcoa.2023.100098.
Freeling F, Björnsdotter MK. Assessing the environmental occurrence of the anthropogenic contaminant trifluoroacetic acid (TFA). Curr Opin Green Sustain Chem. 2023;41:100807. https://doi.org/10.1016/j.cogsc.2023.100807.
Xie G, Cui J, Zhai Z, Zhang J. Distribution characteristics of trifluoroacetic acid in the environments surrounding fluorochemical production plants in Jinan. China Environ Sci Pollut Res. 2020;27:983–91. https://doi.org/10.1007/s11356-019-06689-4.
López SE, Salazar J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J Fluor Chem. 2013;156:73–100. https://doi.org/10.1016/j.jfluchem.2013.09.004.
Neuwald IJ, Hübner D, Wiegand HL, Valkov V, Borchers U, Nödler K, Scheurer M, Hale SE, Arp HPH, Zahn D. Ultra-short-chain PFASs in the sources of german drinking water: prevalent, overlooked, difficult to remove, and unregulated. Environ Sci Technol. 2022;56:6380–90. https://doi.org/10.1021/acs.est.1c07949.
Article CAS PubMed Google Scholar
Tian Y, Yao Y, Chang S, Zhao Z, Zhao Y, Yuan X, Wu F, Sun H. Occurrence and phase distribution of neutral and ionizable Per- and Polyfluoroalkyl Substances (PFASs) in the atmosphere and plant leaves around landfills: a case study in Tianjin, China. Environ Sci Technol. 2018;52:1301–10. https://doi.org/10.1021/acs.est.7b05385.
Article CAS PubMed Google Scholar
Chen H, Yao Y, Zhao Z, Wang Y, Wang Q, Ren C, Wang B, Sun H, Alder AC, Kannan K. Multimedia distribution and transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding two fluorochemical manufacturing facilities in Fuxin, China. Environ Sci Technol. 2018;52:8263–71. https://doi.org/10.1021/acs.est.8b00544.
Article CAS PubMed Google Scholar
de los Angeles Garavagno M, Holland R, Khan MAH, Orr-Ewing AJ, Shallcross DE. Trifluoroacetic acid: toxicity, sources sinks and future prospects. Sustainability. 2024;16:2382. https://doi.org/10.3390/su16062382.
Berends AG, Boutonnet JC, De RCG, Thompson RS. Toxicity of trifluoroacetate to aquatic organisms. Environ Toxicol Chem. 1999;18:1053–9. https://doi.org/10.1002/etc.5620180533.
Lau C, Butenhoff JL, Rogers JM. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol. 2004;198:231–41. https://doi.org/10.1016/j.taap.2003.11.031.
Article CAS PubMed Google Scholar
Olson CT, Andersen ME. The acute toxicity of perfluorooctanoic and perfluorodecanoic acids in male rats and effects on tissue fatty acids. Toxicol Appl Pharmacol. 1983;70:362–72. https://doi.org/10.1016/0041-008X(83)90154-0.
Comments (0)