Bassett CAL, Donath A, Macagno F, Preisig R, Fleisch H, Francis MD. Diphosphonates in the treatment of Myositis ossificans. Lancet. 1969. https://doi.org/10.1016/S0140-6736(69)92293-4.
Lala R, Matarazzo P, Bertelloni S, Buzi F, Rigon F, Sanctis C. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright syndrome. Acta Paediatrica. 2007;89:88–193.
Whitaker M, Guo J, Kehoe T, Benson G. The New England journal of medicine. N Engl J Med. 2012;2048–2051.
Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Langrish V. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer. 2000;82(8):1459–68. https://doi.org/10.1054/bjoc.1999.1131.
Article PubMed PubMed Central Google Scholar
Russell RGG. Bisphosphonates: the first 40years. Bone. 2011;49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022.
Alfred A, Reszka, Gideon A, Rodan MD. Mechanism of action of bisphosphonates. Curr Osteoporos Rep. 2003;1:45–52.
Zhao T, Wang L, Li Y, Chen S, Wang R, Chen DDY. Quantification of the bisphosphonate alendronate using capillary electrophoresis mass spectrometry with dynamic pH barrage junction focusing. Electrophoresis. 2021;42(4):350–9. https://doi.org/10.1002/elps.202000228.
Knych HK, Janes J, Kennedy L, McKemie DS, Arthur RM, Samol MA, Uzal FA, Scollay M. Detection and residence time of bisphosphonates in bone of horses. J Vet Diagn Invest. 2021;34(1):23–7. https://doi.org/10.1177/10406387211050049.
Article PubMed Central Google Scholar
Jia C, Shang J, Wang Y, Bai L, Tong C, Chen Y, Zhang P. Copper(II)–mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sens Actuators B Chem. 2018;269:271–7. https://doi.org/10.1016/j.snb.2018.04.127.
Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Bifunctional ratiometric sensor based on highly fluorescent nitrogen and sulfur biomass-derived carbon nanodots fabricated from manufactured dairy product as a precursor. Spectrochim Acta A Mol Biomol Spectrosc. 2023;293: 122444. https://doi.org/10.1016/j.saa.2023.122444.
Zhang X, Dong H, Zhou H, Li Y, Liu Q, Cui H, Wang S, Li Y, Wei Q. Surface motifs regulated aggregation induced emission in AuAg nanoclusters combined with Ce(III)/Ce(IV) catalytic cyclic amplification strategy for sensitive bioanalysis. Sens Actuators B Chem. 2024;400: 134911. https://doi.org/10.1016/j.snb.2023.134911.
Guo Y, Zhang J, Liu J, Wang N, Su X. A highly sensitive fluorescence “on–off–on” sensing platform for captopril detection based on AuNCs@ZIF-8 nanocomposite. Anal Chim Acta. 2023;1276: 341649. https://doi.org/10.1016/j.aca.2023.341649.
Xin Y, Zhang D, Zeng Y, Wang Y, Qi P. A dual-emission ratiometric fluorescent sensor based on copper nanoclusters encapsulated in zeolitic imidazolate framework-90 for rapid detection and imaging of adenosine triphosphate. Anal Methods. 2023;15(6):788–96. https://doi.org/10.1039/d2ay01932a.
Ye X, Wang Z, Hu X, Xie P, Liu Y. Differential evaluation of sulfur oxides in the natural lake water samples by carbazole–furan fluorescent probe. Chemosphere. 2024;352: 141308. https://doi.org/10.1016/j.chemosphere.2024.141308.
Yin M, Qiu D, Wang M, Wang Z, Han L, Li L, Tong J, Nie H, Wu Y, Qiao X. Fluorescence sensor array for highly sensitive pattern recognition of biothiols in food based on tricolor upconversion luminescence metal-organic frameworks. J Nanobiotechnology. 2024;22(1):719. https://doi.org/10.1186/s12951-024-03014-1.
Article PubMed PubMed Central Google Scholar
Wang Z, Pan X, Qian S, Yang G, Du F, Yuan X. The beauty of binary phases: a facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord Chem Rev. 2021. https://doi.org/10.1016/j.ccr.2021.213900.
Zhang L, Bi X, Wang H, Li L, You T. Loading of AuNCs with AIE effect onto cerium-based MOFs to boost fluorescence for sensitive detection of Hg(2)(). Talanta. 2024;273: 125843. https://doi.org/10.1016/j.talanta.2024.125843.
Guo H, Zhang Y, Zheng Z, Lin H, Zhang Y. Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta. 2017;170:146–51. https://doi.org/10.1016/j.talanta.2017.03.096.
Sun X, Gu Z, Gao Y, Liang M, Xia L, Qu F. Regulating Arrhenius activation energy and fluorescence quantum yields of AuNCs-MOF to achieve high temperature sensitivity in a wide response window. ACS Appl Mater Interfaces. 2024;16(37):49612–9. https://doi.org/10.1021/acsami.4c07733.
Yang Q, Xu Q, Yu SH, Jiang HL. Pd nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed Engl. 2016;55(11):3685–9. https://doi.org/10.1002/anie.201510655.
Lim H, Ju Y, Kim J. Tailoring catalytic activity of Pt nanoparticles encapsulated inside dendrimers by tuning nanoparticle sizes with subnanometer accuracy for sensitive chemiluminescence-based analyses. Anal Chem. 2016;88(9):4751–8. https://doi.org/10.1021/acs.analchem.6b00073.
Shieh F-K, Wang S-C, Yen C-I, Wu C-C, Dutta S, Chou L-Y, Morabito JV, Hu P, Hsu M-H, Wu KCW, Tsung C-K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc. 2015;137(13):4276–9. https://doi.org/10.1021/ja513058h.
Gao S, Zhao N, Shu M, Che S. Palladium nanoparticles supported on MOF-5: a highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Appl Catal A Gen. 2010;388(1–2):196–201. https://doi.org/10.1016/j.apcata.2010.08.045.
Azad M, Rostamizadeh S, Estiri H, Nouri F. Ultra-small and highly dispersed Pd nanoparticles inside the pores of ZIF-8: sustainable approach to waste-minimized Mizoroki-Heck cross-coupling reaction based on reusable heterogeneous catalyst. Appl Organomet Chem. 2019;33(7): e4952. https://doi.org/10.1002/aoc.4952.
Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A, Chen X-Z, deMello AJ, Doonan CJ, Falcaro P, Nelson BJ, Puigmartí-Luis J, Pané S. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl Mater Today. 2018;11:13–21. https://doi.org/10.1016/j.apmt.2017.12.014.
Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242: 118715. https://doi.org/10.1016/j.saa.2020.118715.
Du J, Chen J, Tong H, Duan J, Zhang Q, Liao S. A novel fluorescent nanoprobe based on platinum nanoclusters with the characteristic of aggregation-induced emission for the detection of Cu2+ and D-penicillamine. Spectrochim Acta A Mol Biomol Spectrosc. 2025. https://doi.org/10.1016/j.saa.2025.125880.
Manousi N, Tzanavaras PD, Zacharis CK. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological materials: an updated review. J Pharm Biomed Anal. 2022;219: 114921. https://doi.org/10.1016/j.jpba.2022.114921.
Song C-Y, Zhang J-Y, Qiu Y, Jin H-P, Zhang H-M, Liu S, Liu H, Qiu H-B, Gao G-G. Value-added anticancer reactivity of sub-5 nm Ag-drug nanoparticles derived from organosilver(I) MOF. Sci China Chem. 2018;62(3):347–54. https://doi.org/10.1007/s11426-018-9376-7.
Li Y, Liu ML, Liang WB, Zhuo Y, He XJ. Spherical nucleic acid enzyme programmed network to accelerate CRISPR assays for electrochemiluminescence biosensing applications. Biosens Bioelectron. 2023;238: 115589. https://doi.org/10.1016/j.bios.2023.115589.
Niu X, Suo Z, Li J, Wei M, Jin H, He B. Self-assembled programmable DNA nanoflower for in situ synthesis of gold nanoclusters and integration with Mn-MOF to sensitively detect AFB1. Chem Eng J. 2024. https://doi.org/10.1016/j.cej.2023.147806.
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater. 2018;1(6):1768–86. https://doi.org/10.1021/acsabm.8b00600.
Kuppan B, Maitra U. Instant room temperature synthesis of self-assembled emission-tunable gold nanoclusters: million-fold emission enhancement and fluorimetric detection of Zn2+. Nanoscale. 2017;9(40):15494–504. https://doi.org/10.1039/c7nr05659a.
Lin L, Hu Y, Zhang L, Huang Y, Zhao S. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-c
Comments (0)