Encapsulating Pt NCs with an AIE effect into a metal–organic framework as a novel fluorescence nanoprobe for discriminatively detecting bisphosphonate drugs

Bassett CAL, Donath A, Macagno F, Preisig R, Fleisch H, Francis MD. Diphosphonates in the treatment of Myositis ossificans. Lancet. 1969. https://doi.org/10.1016/S0140-6736(69)92293-4.

Article  PubMed  Google Scholar 

Lala R, Matarazzo P, Bertelloni S, Buzi F, Rigon F, Sanctis C. Pamidronate treatment of bone fibrous dysplasia in nine children with McCune-Albright syndrome. Acta Paediatrica. 2007;89:88–193.

Google Scholar 

Whitaker M, Guo J, Kehoe T, Benson G. The New England journal of medicine. N Engl J Med. 2012;2048–2051.

Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Langrish V. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer. 2000;82(8):1459–68. https://doi.org/10.1054/bjoc.1999.1131.

Article  PubMed  PubMed Central  Google Scholar 

Russell RGG. Bisphosphonates: the first 40years. Bone. 2011;49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022.

Article  PubMed  Google Scholar 

Alfred A, Reszka, Gideon A, Rodan MD. Mechanism of action of bisphosphonates. Curr Osteoporos Rep. 2003;1:45–52.

Zhao T, Wang L, Li Y, Chen S, Wang R, Chen DDY. Quantification of the bisphosphonate alendronate using capillary electrophoresis mass spectrometry with dynamic pH barrage junction focusing. Electrophoresis. 2021;42(4):350–9. https://doi.org/10.1002/elps.202000228.

Article  PubMed  Google Scholar 

Knych HK, Janes J, Kennedy L, McKemie DS, Arthur RM, Samol MA, Uzal FA, Scollay M. Detection and residence time of bisphosphonates in bone of horses. J Vet Diagn Invest. 2021;34(1):23–7. https://doi.org/10.1177/10406387211050049.

Article  PubMed Central  Google Scholar 

Jia C, Shang J, Wang Y, Bai L, Tong C, Chen Y, Zhang P. Copper(II)–mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sens Actuators B Chem. 2018;269:271–7. https://doi.org/10.1016/j.snb.2018.04.127.

Article  Google Scholar 

Mohamed RMK, Mohamed SH, Asran AM, Alsohaimi IH, Hassan HMA, Ibrahim H, El-Wekil MM. Bifunctional ratiometric sensor based on highly fluorescent nitrogen and sulfur biomass-derived carbon nanodots fabricated from manufactured dairy product as a precursor. Spectrochim Acta A Mol Biomol Spectrosc. 2023;293: 122444. https://doi.org/10.1016/j.saa.2023.122444.

Article  PubMed  Google Scholar 

Zhang X, Dong H, Zhou H, Li Y, Liu Q, Cui H, Wang S, Li Y, Wei Q. Surface motifs regulated aggregation induced emission in AuAg nanoclusters combined with Ce(III)/Ce(IV) catalytic cyclic amplification strategy for sensitive bioanalysis. Sens Actuators B Chem. 2024;400: 134911. https://doi.org/10.1016/j.snb.2023.134911.

Article  Google Scholar 

Guo Y, Zhang J, Liu J, Wang N, Su X. A highly sensitive fluorescence “on–off–on” sensing platform for captopril detection based on AuNCs@ZIF-8 nanocomposite. Anal Chim Acta. 2023;1276: 341649. https://doi.org/10.1016/j.aca.2023.341649.

Article  PubMed  Google Scholar 

Xin Y, Zhang D, Zeng Y, Wang Y, Qi P. A dual-emission ratiometric fluorescent sensor based on copper nanoclusters encapsulated in zeolitic imidazolate framework-90 for rapid detection and imaging of adenosine triphosphate. Anal Methods. 2023;15(6):788–96. https://doi.org/10.1039/d2ay01932a.

Article  PubMed  Google Scholar 

Ye X, Wang Z, Hu X, Xie P, Liu Y. Differential evaluation of sulfur oxides in the natural lake water samples by carbazole–furan fluorescent probe. Chemosphere. 2024;352: 141308. https://doi.org/10.1016/j.chemosphere.2024.141308.

Article  PubMed  Google Scholar 

Yin M, Qiu D, Wang M, Wang Z, Han L, Li L, Tong J, Nie H, Wu Y, Qiao X. Fluorescence sensor array for highly sensitive pattern recognition of biothiols in food based on tricolor upconversion luminescence metal-organic frameworks. J Nanobiotechnology. 2024;22(1):719. https://doi.org/10.1186/s12951-024-03014-1.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Pan X, Qian S, Yang G, Du F, Yuan X. The beauty of binary phases: a facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord Chem Rev. 2021. https://doi.org/10.1016/j.ccr.2021.213900.

Article  Google Scholar 

Zhang L, Bi X, Wang H, Li L, You T. Loading of AuNCs with AIE effect onto cerium-based MOFs to boost fluorescence for sensitive detection of Hg(2)(). Talanta. 2024;273: 125843. https://doi.org/10.1016/j.talanta.2024.125843.

Article  PubMed  Google Scholar 

Guo H, Zhang Y, Zheng Z, Lin H, Zhang Y. Facile one-pot fabrication of Ag@MOF(Ag) nanocomposites for highly selective detection of 2,4,6-trinitrophenol in aqueous phase. Talanta. 2017;170:146–51. https://doi.org/10.1016/j.talanta.2017.03.096.

Article  PubMed  Google Scholar 

Sun X, Gu Z, Gao Y, Liang M, Xia L, Qu F. Regulating Arrhenius activation energy and fluorescence quantum yields of AuNCs-MOF to achieve high temperature sensitivity in a wide response window. ACS Appl Mater Interfaces. 2024;16(37):49612–9. https://doi.org/10.1021/acsami.4c07733.

Article  PubMed  Google Scholar 

Yang Q, Xu Q, Yu SH, Jiang HL. Pd nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed Engl. 2016;55(11):3685–9. https://doi.org/10.1002/anie.201510655.

Article  PubMed  Google Scholar 

Lim H, Ju Y, Kim J. Tailoring catalytic activity of Pt nanoparticles encapsulated inside dendrimers by tuning nanoparticle sizes with subnanometer accuracy for sensitive chemiluminescence-based analyses. Anal Chem. 2016;88(9):4751–8. https://doi.org/10.1021/acs.analchem.6b00073.

Article  PubMed  Google Scholar 

Shieh F-K, Wang S-C, Yen C-I, Wu C-C, Dutta S, Chou L-Y, Morabito JV, Hu P, Hsu M-H, Wu KCW, Tsung C-K. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc. 2015;137(13):4276–9. https://doi.org/10.1021/ja513058h.

Article  PubMed  Google Scholar 

Gao S, Zhao N, Shu M, Che S. Palladium nanoparticles supported on MOF-5: a highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Appl Catal A Gen. 2010;388(1–2):196–201. https://doi.org/10.1016/j.apcata.2010.08.045.

Article  Google Scholar 

Azad M, Rostamizadeh S, Estiri H, Nouri F. Ultra-small and highly dispersed Pd nanoparticles inside the pores of ZIF-8: sustainable approach to waste-minimized Mizoroki-Heck cross-coupling reaction based on reusable heterogeneous catalyst. Appl Organomet Chem. 2019;33(7): e4952. https://doi.org/10.1002/aoc.4952.

Article  Google Scholar 

Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A, Chen X-Z, deMello AJ, Doonan CJ, Falcaro P, Nelson BJ, Puigmartí-Luis J, Pané S. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl Mater Today. 2018;11:13–21. https://doi.org/10.1016/j.apmt.2017.12.014.

Article  Google Scholar 

Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242: 118715. https://doi.org/10.1016/j.saa.2020.118715.

Article  PubMed  Google Scholar 

Du J, Chen J, Tong H, Duan J, Zhang Q, Liao S. A novel fluorescent nanoprobe based on platinum nanoclusters with the characteristic of aggregation-induced emission for the detection of Cu2+ and D-penicillamine. Spectrochim Acta A Mol Biomol Spectrosc. 2025. https://doi.org/10.1016/j.saa.2025.125880.

Article  PubMed  Google Scholar 

Manousi N, Tzanavaras PD, Zacharis CK. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological materials: an updated review. J Pharm Biomed Anal. 2022;219: 114921. https://doi.org/10.1016/j.jpba.2022.114921.

Article  PubMed  Google Scholar 

Song C-Y, Zhang J-Y, Qiu Y, Jin H-P, Zhang H-M, Liu S, Liu H, Qiu H-B, Gao G-G. Value-added anticancer reactivity of sub-5 nm Ag-drug nanoparticles derived from organosilver(I) MOF. Sci China Chem. 2018;62(3):347–54. https://doi.org/10.1007/s11426-018-9376-7.

Article  Google Scholar 

Li Y, Liu ML, Liang WB, Zhuo Y, He XJ. Spherical nucleic acid enzyme programmed network to accelerate CRISPR assays for electrochemiluminescence biosensing applications. Biosens Bioelectron. 2023;238: 115589. https://doi.org/10.1016/j.bios.2023.115589.

Article  PubMed  Google Scholar 

Niu X, Suo Z, Li J, Wei M, Jin H, He B. Self-assembled programmable DNA nanoflower for in situ synthesis of gold nanoclusters and integration with Mn-MOF to sensitively detect AFB1. Chem Eng J. 2024. https://doi.org/10.1016/j.cej.2023.147806.

Article  Google Scholar 

Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater. 2018;1(6):1768–86. https://doi.org/10.1021/acsabm.8b00600.

Article  PubMed  Google Scholar 

Kuppan B, Maitra U. Instant room temperature synthesis of self-assembled emission-tunable gold nanoclusters: million-fold emission enhancement and fluorimetric detection of Zn2+. Nanoscale. 2017;9(40):15494–504. https://doi.org/10.1039/c7nr05659a.

Article  PubMed  Google Scholar 

Lin L, Hu Y, Zhang L, Huang Y, Zhao S. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-c

Comments (0)

No login
gif