Optimal mean arterial pressure for favorable neurological outcomes in patients after cardiac arrest

Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24:1–13.

Google Scholar 

Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81:1479–87.

PubMed  Google Scholar 

Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche J-D, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39:1972–80.

PubMed  Google Scholar 

Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84:337–42.

PubMed  Google Scholar 

Gunn AJ, Laptook AR, Robertson NJ, Barks JD, Thoresen M, Wassink G, et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res. 2017;81:202–9.

PubMed  Google Scholar 

Elmer J, Callaway CW. The brain after cardiac arrest. Semin Neurol: Thieme Med Publishers. 2017;37:19–24.

Google Scholar 

Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:1–10.

Google Scholar 

Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post–cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication a consensus statement from the International liaison Committee on resuscitation (American Heart Association, Australian and New Zealand Council on resuscitation, European resuscitation Council, Heart and Stroke Foundation of Canada, Interamerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association emergency cardiovascular care committee; the Council on cardiovascular surgery and anesthesia; the Council on cardiopulmonary, perioperative, and critical care; the Council on clinical cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.

PubMed  Google Scholar 

Schmidt B, Klingelhöfer J, Perkes I, Czosnyka M. Cerebral autoregulatory response depends on the direction of change in perfusion pressure. J Neurotrauma. 2009;26:651–6.

PubMed  Google Scholar 

Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–32.

CAS  PubMed  Google Scholar 

Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142:S366–468.

PubMed  Google Scholar 

Ameloot K, De Deyne C, Eertmans W, Ferdinande B, Dupont M, Palmers P-J, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial. Eur Heart J. 2019;40:1804–14.

CAS  PubMed  Google Scholar 

Roberts BW, Kilgannon JH, Hunter BR, Puskarich MA, Shea L, Donnino M, et al. Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study. Crit Care Med. 2019;47:93–100.

PubMed  PubMed Central  Google Scholar 

Kilgannon JH, Roberts BW, Jones AE, Mittal N, Cohen E, Mitchell J, et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest. Crit Care Med. 2014;42:2083–91.

PubMed  Google Scholar 

Ameloot K, Meex I, Genbrugge C, Jans F, Boer W, Verhaert D, et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: a prospective observational study. Resuscitation. 2015;91:56–62.

CAS  PubMed  Google Scholar 

Bhate TD, McDonald B, Sekhon MS, Griesdale DE. Association between blood pressure and outcomes in patients after cardiac arrest: a systematic review. Resuscitation. 2015;97:1–6.

PubMed  Google Scholar 

Grebovic M, Filipovic L, Katnic I, Vukotic M, Popovic T. Machine learning models for statistical analysis. Int Arab J Inf Technol. 2023;20:505–14.

Google Scholar 

Hunter DJ, Holmes C. Where medical statistics meets artificial intelligence. N Engl J Med. 2023;389:2403–4.

PubMed  Google Scholar 

Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med. 2016;44:368–74.

PubMed  PubMed Central  Google Scholar 

Gibson WJ, Nafee T, Travis R, Yee M, Kerneis M, Ohman M, et al. Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-019-01940-8.

Article  PubMed  Google Scholar 

Lauritsen SM, Kristensen M, Olsen MV, Larsen MS, Lauritsen KM, Jørgensen MJ, et al. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat Commun. 2020;11:3852.

PubMed  PubMed Central  Google Scholar 

Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med Inform Decis Mak. 2020;20:1–10.

Google Scholar 

Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med. 2018;6:216.

PubMed  PubMed Central  Google Scholar 

Registries R. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports. Circulation. 2004.

Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3:63–81.

PubMed  Google Scholar 

Krychtiuk KA, Fordyce CB, Hansen CM, Hassager C, Jentzer JC, Menon V, et al. Targeted temperature management after out of hospital cardiac arrest: quo vadis? Eur Heart J Acute Cardiovasc Care. 2022;11:512–21.

PubMed  Google Scholar 

Li Z, Zhou D, Zhang S, Wu L, Shi G. Association between mean arterial pressure and survival in patients after cardiac arrest with vasopressor support: a retrospective study. Eur J Emerg Med. 2021;28:277–84.

PubMed  Google Scholar 

McGuigan PJ, Giallongo E, Blackwood B, Doidge J, Harrison DA, Nichol AD, et al. The effect of blood pressure on mortality following out-of-hospital cardiac arrest: a retrospective cohort study of the United Kingdom Intensive Care National Audit and Research Centre database. Crit Care. 2023;27:4.

PubMed  PubMed Central  Google Scholar 

Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive–inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med. 2010;11:234–8.

PubMed  Google Scholar 

Yamaguchi K. Intrinsic meaning of shapley values in regression. 2020 11th international conference on awareness science and technology (ICAST): IEEE; 2020.

Mokhtari KE, Higdon BP, Başar A. Interpreting financial time series with SHAP values. Proceedings of the 29th annual international conference on computer science and software engineering 2019. https://doi.org/10.5555/3370272.3370290.

Zihni E, Madai VI, Livne M, Galinovic I, Khalil AA, Fiebach JB, et al. Opening the black box of artificial intelligence for clinical decision support: a study predicting stroke outcome. PLoS ONE. 2020;15: e0231166.

CAS  PubMed  PubMed Central  Google Scholar 

Lee K-S, Kim ES. Explainable artificial intelligence in the early diagnosis of gastrointestinal disease. Diagnostics. 2022;12: 2740.

PubMed  PubMed Central  Google Scholar 

Yang S-W, Lee K-S, Heo JS, Choi E-S, Kim K, Lee S, et al. Machine learning analysis with population data for prepregnancy and perinatal risk factors for the neurodevelopmental delay of offspring. Sci Rep. 2024;14: 13993.

CAS  PubMed  PubMed Central  Google Scholar 

Lee K-S, Ham B-J. Machine learning on early diagnosis of depression. Psychiatry Investig. 2022;19:597.

PubMed  PubMed Central  Google Scholar 

Rikhraj KJ, Wood MD, Hoiland RL, Thiara S, Griesdale DE, Sekhon MS. Determining optimal mean arterial pressure after cardiac arrest: a systematic review. Neurocrit Care. 2021;34:621–34.

PubMed  Google Scholar 

Xie J, Carbonara AR, Al-Battashi A-W, Ross-White A, Boyd JG. Individualized mean arterial pressure targets in critically ill patients guided by non-invasive cerebral-autoregulation: a scoping review. Crit Care. 2025;29:1–15.

Google Scholar 

Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, et al. Critical care management of patients after cardiac arrest: a scientific statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care. 2024;40:1–37.

PubMed  Google Scholar 

Kjaergaard J, Møller JE, Schmidt H, Grand J, Mølstrøm S, Borregaard B, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med. 2022;387:1456–66.

PubMed  Google Scholar 

Jakkula P, Pettilä V, Skrifvars MB, Hästbacka J, Loisa P, Tiainen M, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2091–101.

CAS  PubMed  PubMed Central  Google Scholar 

Grand J, Meyer AS, Kjaergaard J, Wiberg S, Thomsen JH, Frydland M, et al. A randomised double-blind pilot trial comparing a mean arterial pressure target of 65 mm hg versus 72 mm hg after out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care. 2020;9:S100–9.

PubMed  Google Scholar 

Comments (0)

No login
gif