McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—an overview. JAMA Psychiatry. 2020;77:201.
McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.
Biedermann F, Fleischhacker WW. Psychotic disorders in DSM-5 and ICD-11. CNS Spectr. 2016;21:349–54.
Seidman LJ, Mirsky AF. Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder. J Int Neuropsychol Soc. 2017;23:881–92.
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein H-G, Steiner J, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry. 2014;5:47.
PubMed PubMed Central Google Scholar
Sonnenschein SF, Grace AA. Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology. 2020;163:107632.
Shen L-H, Liao M-H, Tseng Y-C. Recent advances in imaging of dopaminergic neurons for evaluation of neuropsychiatric disorders. J Biomed Biotechnol. 2012;2012:259349.
PubMed PubMed Central Google Scholar
Abi-Dargham A. From ‘bedside’ to ‘bench’ and back: a translational approach to studying dopamine dysfunction in schizophrenia. Neurosci Biobehav Rev. 2020;110:174–9.
Sonnenschein SF, Gomes FV, Grace AA. Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Front Psychiatry. 2020;11:613.
PubMed PubMed Central Google Scholar
Carlsson A, Lindqvist M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharm Toxicol. 1963;20:140–4.
Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261:717–9.
Wadenberg M. Dopamine D2 receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology. 2001;25:633–41.
Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75:e11–13.
Feber L, Peter NL, Chiocchia V, Schneider-Thoma J, Siafis S, Bighelli I, et al. Antipsychotic drugs and cognitive function: a systematic review and network meta-analysis. JAMA Psychiatry. 2025;82:47.
Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.
PubMed PubMed Central Google Scholar
Grace AA, Uliana DL. Insights into the mechanism of action of antipsychotic drugs derived from animal models: standard of care versus novel targets. Int J Mol Sci. 2023;24:12374.
CAS PubMed PubMed Central Google Scholar
Greenwood KE, Landau S, Wykes T. Negative symptoms and specific cognitive impairments as combined targets for improved functional outcome within cognitive remediation therapy. Schizophr Bull. 2005;31:910–21.
Bowie CR, Harvey PD. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat. 2006;2:531–6.
PubMed PubMed Central Google Scholar
Luo H, Zhao Y, Fan F, Fan H, Wang Y, Qu W, et al. A bottom-up model of functional outcome in schizophrenia. Sci Rep. 2021;11:7577.
CAS PubMed PubMed Central Google Scholar
Heckers S, Konradi C. Hippocampal pathology in schizophrenia. Curr Top Behav Neurosci. 2010;4:529–53.
Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72.
CAS PubMed PubMed Central Google Scholar
Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78:81–93.
CAS PubMed PubMed Central Google Scholar
Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res. 2002;55:1–10.
Lodge DJ, Behrens MM, Grace AA. A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci. 2009;29:2344–54.
CAS PubMed PubMed Central Google Scholar
Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci. 2007;27:11424–30.
CAS PubMed PubMed Central Google Scholar
Modinos G, Allen P, Grace AA, McGuire P. Translating the MAM model of psychosis to humans. Trends Neurosci. 2015;38:129–38.
Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry. 2006;60:253–64.
CAS PubMed PubMed Central Google Scholar
Gomes FV, Rincón-Cortés M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neurosci Biobehav Rev. 2016;70:260–70.
PubMed PubMed Central Google Scholar
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.
CAS PubMed PubMed Central Google Scholar
Lodge DJ, Grace AA. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharm Sci. 2011;32:507–13.
Singh R, Hahn MK, Bansal Y, Agarwal SM, Remington G. Evenamide: a potential pharmacotherapeutic alternative for treatment-resistant schizophrenia. Int J Neuropsychopharmacol. 2024;27:pyae005.
PubMed PubMed Central Google Scholar
Singh R, Sharma R, Kumar B, Kuhad A, Kuhad A. Evenamide hydrochloride. Voltage-gated sodium channel blocker, treatment of schizophrenia. Drugs Future. 2019;44:693.
Anand R, Forrest EC, Hartman RD, Graham SM, Faravelli L. Evenamide, a voltage-gated sodium channel blocker in the treatment of schizophrenia: results from a placebo-controlled study. Eur Neuropsychopharmacol. 2017;27:S947–8.
Chahine M, Chatelier A, Babich O, Krupp J. Voltage-gated sodium channels in neurological disorders. CNSNDDT. 2008;7:144–58.
Anand R, Bortolato M, Faravelli L. Glutamate modulation by evenamide, a Na+ channel blocker, may benefit treatment resistant schizophrenic (TRS) patients not responding to clozapine. Eur Neuropsychopharmacol. 2019;29:S540–1.
Bortolato M, Faravelli L, Anand R. T36. The antipsychotic-like properties of evenamide (NW-3509) reflect the modulation of glutamatergic dysregulation. Schizophr Bull. 2018;44:S126–7.
Faravelli L, Anand R, Forrest E. Evenamide (formerly NW-3509) targets new mechanisms, and represents a new approach to the management of untreated symptoms in schizophrenia. Eur Neuropsychopharmacol. 2016;26:S588.
Anand R, Forrest EC, Hartman RD, Graham SM, Faravelli L. T48. ANTIPSYCHOTIC EFFICACY OF EVENAMIDE (NW-3509) IS DUE TO MODULATION OF GLUTAMATERGIC DYSREGULATION. Schizophrenia Bull. 2018;44:S132.
Anand R, Turolla A, Chinellato G, Roy A, Hartman RD. Phase 2 results indicate evenamide, a selective modulator of glutamate release, is associated with clinically important long-term efficacy when added to an antipsychotic in patients with treatment-resistant schizophrenia. Int J Neuropsychopharmacol. 2023;26:523–8.
CAS PubMed PubMed Central Google Scholar
Anand R, Turolla A, Chinellato G, Roy A, Hartman RD. Therapeutic effect of evenamide, a glutamate inhibitor, in patients with treatment-resistant schizophrenia (TRS): final, 1-year results from a phase 2, open-label, rater-blinded, randomized, international clinical trial. Int J Neuropsychopharmacol. 2024;28:pyae061.
PubMed PubMed Central Google Scholar
Anand R, Turolla A,
Comments (0)