Board CNE. Colorectal Cancer: Statistics, https://www.cancer.net/cancer-types/colorectal-cancer/statistics (2023).
Dekker E, et al. Pure-AMC Lancet. 2019;394:1467–80. https://doi.org/10.1016/s0140-6736(19)32319-0.
Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.
Arnold M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91. https://doi.org/10.1136/gutjnl-2015-310912.
Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–85. https://doi.org/10.1001/jama.2021.0106.
Article CAS PubMed Google Scholar
Sawicki T, et al. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13:2025. https://doi.org/10.3390/cancers13092025.
Article CAS PubMed PubMed Central Google Scholar
Bourang, S. et al. Anticancer properties of copolymer nanoparticles loaded with Foeniculum vulgare derivatives in Hs578T and SUM159 cancer cell lines. Cancer Nano. 2025;16:1–28. https://doi.org/10.1186/s12645-025-00318-1
Kalyan A, et al. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018;9:160. https://doi.org/10.21037/jgo.2018.01.17.
Article PubMed PubMed Central Google Scholar
Kircher, et al. Targeting angiogenesis in colorectal cancer: tyrosine kinase inhibitors. J Cancer. 2016;22:182–9. https://doi.org/10.1097/ppo.0000000000000192.
Dasineh S, et al. Tacrolimus-loaded chitosan-coated nanostructured lipid carriers: preparation, optimization and physicochemical characterization. Appl Nanosci. 2021;11:1169–81. https://doi.org/10.1007/s13204-021-01744-4.
Ebrahimi H, et al. Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug. J Pharm Pharmacol. 2016;68:450–8. https://doi.org/10.1111/jphp.12537.
Article CAS PubMed Google Scholar
Fasili Z, et al. Applying nanoparticles in the treatment of viral infections and toxicological considerations. Pharm Biomed Res. 2019;5:1–20. https://doi.org/10.18502/pbr.v5i4.2392.
Entezar-Almahdi E, et al. Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int J Nanomed. 2020;5445–58. https://doi.org/10.2147/ijn.s257700.
Cho Y-H, et al. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Comm. 2020;11:5321. https://doi.org/10.1038/s41467-020-19173-2.
Xie P, et al. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol. 2020;43:989–1001. https://doi.org/10.1007/s13402-020-00529-1.
Vodenkova S, et al. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447. https://doi.org/10.1016/j.pharmthera.2019.107447.
Article CAS PubMed Google Scholar
Bourang S, et al. Application of nanoparticles in breast cancer treatment: a systematic review. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;1–47. https://doi.org/10.1007/s00210-024-03082-y.
Sukumaran S, et al. Magnetic nanoparticles: synthesis and potential biological applications. JSM Nanatechnol Nanomed. 2018;6:1068.
Chen Y-T, et al. Biosensing using magnetic particle detection techniques. Sensors. 2017;17:2300. https://doi.org/10.3390/s17102300.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, et al. Design and synthesis of magnetic nanoparticles for biomedical diagnostics. Quant Imaging Med Surg. 2018;8:957. https://doi.org/10.21037/qims.2018.10.07.
Article PubMed PubMed Central Google Scholar
Andrade RG, et al. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications. Int J Mol Sci. 2020;21:2455. https://doi.org/10.3390/ijms21072455.
Article CAS PubMed PubMed Central Google Scholar
Noqta OA, et al. Recent advances in iron oxide nanoparticles (IONPs): synthesis and surface modification for biomedical applications. J Supercond Nov Magn. 2019;32:779–95. https://doi.org/10.1007/s10948-018-4939-6.
Amani A, et al. Design and fabrication of novel multi-targeted magnetic nanoparticles for gene delivery to breast cancer cells. J Drug Deliv Sci Technol. 2021;61:102151. https://doi.org/10.1016/j.jddst.2020.102151.
Nasab SH, et al. Design and Preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of SiRNA and Paclitaxel. J Pharm Anal. 2021;11:163–73. https://doi.org/10.1016/j.jpha.2020.04.005.
Drumright RE, et al. Polylactic acid technology. Adv Mater. 2000;12:1841–6. https://advanced.onlinelibrary.wiley.com/doi/10.1002/1521-4095(200012)12:23%3C1841::AID-ADMA1841%3E3.0.CO;2-E.
Nurazzi N, et al. Composites based on conductive polymer with carbon nanotubes in DMMP gas sensors–an overview. Polimery. 2021;66:85–97. https://doi.org/10.14314/polimery.2021.2.1.
Ali S, et al. The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int J Energy Econ Policy. 2020;10:84–9. https://doi.org/10.32479/ijeep.8987.
Feghali E, et al. Catalytic chemical recycling of biodegradable polyesters. Polym Degrad Stab. 2020;179:109241. https://doi.org/10.1016/j.polymdegradstab.2020.109241.
Amani A, et al. Design and invitro characterization of green synthesized magnetic nanoparticles conjugated with multitargeted Poly lactic acid copolymers for co-delivery of SiRNA and Paclitaxel. Eur J Pharm Sci. 2021;167:106007. https://doi.org/10.1016/j.ejps.2021.106007.
Article CAS PubMed Google Scholar
Maga D, et al. A comparative life cycle assessment of meat trays made of various packaging materials. Sustainability. 2019;11:5324. https://doi.org/10.3390/su11195324.
Chitaka T, et al. In pursuit of environmentally friendly straws: A comparative life cycle assessment of five straw material options in South Africa. INT J LIFE CYCLE ASS. 2020;25:1818–32. https://doi.org/10.1007/s11367-020-01786-w.
Hajleh A, et al. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosmet Dermatol. 2020;19:2805–11. https://doi.org/10.1111/jocd.13696.
Ponta H, et al. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45. https://doi.org/10.1038/nrm1004.
Article CAS PubMed Google Scholar
Rao NV, et al. Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opin Drug Deliv. 2016;13:239–52. https://doi.org/10.1517/17425247.2016.1112374.
Article CAS PubMed Google Scholar
Bourang S, et al. PLA-HA/Fe3O4magnetic nanoparticles loaded with curcumin: physicochemical characterization and toxicity evaluation in HCT116 colorectal cancer cells. Discov Appl Sci. 2024;6:186. https://doi.org/10.1007/s42452-024-05858-6.
Warthen J Jr, et al. Estimation of Azadirachtin content in Neem extracts and formulations. J Liq Chromatogr. 1984;7:591–8. https://doi.org/10.1080/01483918408073988.
Cohen-Sela E, et al. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release. 2009;133:90–5. https://doi.org/10.1016/j.jconrel.2008.09.073.
Comments (0)