Kwan ML, Ergas IJ, Somkin CP, Quesenberry CP, Neugut AI, Hershman DL, et al. Quality of life among women recently diagnosed with invasive breast cancer: the pathways study. Breast Cancer Res Treat. 2010;123:507–24.
PubMed PubMed Central Google Scholar
Lv H, Hong Y, Zhang Y, Li S, Li B, Zhang M. Efficacy and safety of nanoparticle albumin–bound Paclitaxel compared with solvent–based Paclitaxel in adjuvant therapy for breast cancer: A retrospective study. Oncol Lett. 2024;28(5):509.
CAS PubMed PubMed Central Google Scholar
Mee T, Kirkby NF, Defourny NN, Kirkby KJ, Burnet NG. The use of radiotherapy, surgery and chemotherapy in the curative treatment of cancer: results from the FORTY (Favourable outcomes from RadioTherapY) project. Br J Radiol. 2023;96(1152):20230334.
PubMed PubMed Central Google Scholar
Duan Y, Wang Y, Lu S, Zeng M, Liu L, Dai Q, Yin R. Adverse event profile of albumin-bound paclitaxel: a real-world pharmacovigilance analysis. Front Pharmacol. 2024;15:1448144.
CAS PubMed PubMed Central Google Scholar
Tripathi D, Pandey P, Sharma S, Rai AK, BH MP. Advances in nanomaterials for precision drug delivery: insights into pharmacokinetics and toxicity. BioImpacts. 2024 Nov 2.
Nassiri Koopaei N, Abdollahi M. Opportunities and Obstacles to the development of nanopharmaceuticals for human use. DARU J Pharm Sci. 2016;24:1–6.
Esfandyari-Manesh M, Mostafavi SH, Majidi RF, Koopaei MN, Ravari NS, Amini M, Darvishi B, et al. Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles. DARU J Pharm Sci. 2015;23(1):28.
Hristova-Panusheva K, Xenodochidis C, Georgieva M, Krasteva N. Nanoparticle-Mediated drug delivery systems for precision targeting in oncology. Pharmaceuticals. 2024;17(6):677.
CAS PubMed PubMed Central Google Scholar
Blanco E, Ferrari M. Emerging nanotherapeutic strategies in breast cancer. Breast. 2014;23(1):10–8.
Yang Y, Lin M, Sun M, Zhang G-Q, Guo J, Li J. Nanotechnology boosts the efficiency of tumor diagnosis and therapy. Front Bioeng Biotechnol. 2023;11:1249875.
PubMed PubMed Central Google Scholar
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009:99–105.
Zhao YC, Li X, Wang CQ, Jiao Y, Shen YN, Wang TJ, et al. Unveiling the hidden risks: an update decade-long analysis of Abraxane-related adverse events from the FAERS database. Int J Nanomedicine. 2024;11847–58.
Wang J, Xu J, Yang S, He L, Xu W, Liu Y, et al. SN-38, an active metabolite of irinotecan, inhibits transcription of nuclear factor erythroid 2‐related factor 2 and enhances drug sensitivity of colorectal cancer cells. Mol Carcinog. 2024;63(4):742–56.
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm. 2023;637:122886.
Ebrahimnejad P, Dinarvand R, Sajadi A, Jaafari MR, Nomani AR, Azizi E, et al. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(3):478–85.
Qi Q-r, Tian H, Yue B-s, Zhai B-t, Zhao F. Research progress of SN38 drug delivery system in cancer treatment. Int J Nanomed. 2024:945–64.
Bjedov I, Rallis C. The target of Rapamycin signalling pathway in ageing and lifespan regulation. Genes. 2020;11(9):1043.
CAS PubMed PubMed Central Google Scholar
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today. 2012;17(17–18):1044–52.
Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Therapeutic Delivery. 2010;1(2):323–34.
Kabiri F, Mirfakhraee S, Ardakani YH, Dinarvand R. Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: mechanism of drug loading and release. J Nanopart Res. 2021;23:1–4.
Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–59.
Asrorov AM, Mukhamedov N, Kayumov M, Yashinov AS, Wali A, Yili A et al. Albumin is a reliable drug-delivering molecule: highlighting points in cancer therapy. Med Drug Discovery. 2024:100186.
Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park E-S, et al. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 2012;33(5):1536–46.
Manoochehri S, Darvishi B, Kamalinia G, Amini M, Fallah M, Ostad SN, et al. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. DARU J Pharm Sci. 2013;21(1):58.
Thao LQ, Byeon HJ, Lee C, Lee S, Lee ES, Choi YW, et al. Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharm Res. 2016;33:615–26.
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Controlled Release. 2012;157(2):168–82.
Sharma A, Jain N, Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. Biomed Res Int. 2013;2013(1):960821.
PubMed PubMed Central Google Scholar
Lluch A, Álvarez I, Muñoz M, Seguí MÁ, Tusquets I, García-Estévez L. Treatment innovations for metastatic breast cancer: nanoparticle albumin-bound (NAB) technology targeted to tumors. Crit Rev Oncol/Hematol. 2014;89(1):62–72.
Li H, Gou R, Liao J, Wang Y, Qu R, Tang Q, et al. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment. Acta Materia Med. 2023;2(1):23–41.
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:1–19.
Mondesire WH, Jian W, Zhang H, Ensor J, Hung M-C, Mills GB, Meric-Bernstam F. Targeting mammalian target of Rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res. 2004;10(20):7031–42.
Pencreach E, Guérin E, Nicolet C, Lelong-Rebel I, Voegeli AC, Oudet P, Larsen AK, Gaub MP, Guenot D. Marked activity of Irinotecan and Rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of Rapamycin/hypoxia-inducible factor-1α axis. Clin Cancer Res. 2009;15(4):1297–307.
Geoerger B, Kerr K, Tang C-B, Fung K-M, Powell B, Sutton LN, et al. Antitumor activity of the Rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. 2001;61(4):1527–32.
Jannier S, Kemmel V, Sebastia Sancho C, Chammas A, Sabo A-N, Pencreach E, et al. SFCE-RAPIRI phase I study of Rapamycin plus irinotecan: A new way to target Intra-Tumor hypoxia in pediatric refractory cancers. Cancers. 2020;12(10):3051.
CAS PubMed PubMed Central Google Scholar
Forster RE, Tang Y, Bowyer C, Lloyd AW, Macfarlane W, Phillips GJ, Lewis AL. Development of a combination drug-eluting bead: towards enhanced efficacy for locoregional tumour therapies. Anticancer Drugs. 2012;23(4):355–69.
Septiani L, Hidayat YM, Effendi YS, Djuwantono T, Luftimas DE, Faried A. Akt–the mammalian target of Rapamycin (mTOR) pathway Inhibition increases cervical Cancer cell chemosensitivity to active form of Irinotecan (SN-38). Int J Integr Health Sci. 2013;1(1):13–21.
Hosseinifar N, Goodarzi N, Sharif AA, Amini M, Esfandyari-Manesh M, Dinarvand R. Preparation and characterization of albumin nanoparticles of paclitaxel-triphenylphosphonium conjugates: new approach to subcellular targeting. Drug Research. 2020;70(02/03):71–9.
Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature. 2022;603(7899):166–73.
CAS PubMed PubMed Central Google Scholar
Xie L-X, Sun F-F, He B-F, Zhan X-F, Song J, Chen S-S, et al. Rapamycin inhibited the function of lung CSCs via SOX2. Tumor Biology. 2016;37:4929–37.
Altundag-Erdogan O, Tutar R, Yüce E, Çelebi-Saltik B. Targeting resistant breast cancer stem cells in a three-dimensional culture model with Oleuropein encapsulated in methacrylated alginate microparticles. DARU J Pharm Sci. 2024:1–13.
Comments (0)