Stump CS, H.E., Wei Y, Sowers JR. The metabolic syndrome: role of skeletal muscle metabolism. Ann Med. 2006;38(6):398–402.
Straczkowski M, K.I., Nikolajuk A, Dzienis-Straczkowska S, Szelachowska M, Kinalska I. Plasma interleukin 8 concentrations in obese subjects with impaired glucose tolerance. Cardiovasc Diabetol. 2003;2(5).
Visser M, B.L., McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282(22):2131.
Fischer CP, P.L., Berntsen A, Eskildsen P, Pedersen BK. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol. 2005;117(2):152–60.
Hu FB, M.J., Li TY, Rifai N, Manson JE. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes. 2004;53(3):693–700.
Pradhan AD, M.J., Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327–34.
Temelkova-Kurktschiev T, H.E., Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45(1):151.
Thorand B, L.H., Schneider A, Kolb H, Meisinger C, Frohlich M, et. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study. Arch Intern Med. 2003;163(1):93–9.
Heilbronn LK, C.L. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008;14(12):1225–30.
H, C. Cellular inflammatory responses: novel insights for obesity and insulin resistance. Pharmacol Res. 2006;53(6):469–77.
Lin SY, S.W. An emerging link between insulin resistance and inflammation. J Chin Med Assoc. 2006;69(6):245–7.
Lin N, S.T., Takayama Y, Mimaki Y, Sashida Y, Yano M, et al. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003;65(12):2065–71.
Huang H, L.L., Shi W, et al. The multifunctional effects of nobiletin and its metabolites in vivo and in vitro. Evid Based Complement Alternat Med; 2016.
Onda, K.H., N.; Suzuki, T.; Hirano, T. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes. Phytother Res. 2013;27:312–6.
Zhang, N.Y., Z.; Xiang, S.Z.; Jin, Y.G.; Wei, W.Y.; Bian, Z.Y.; Deng, W.; Tang, Q.Z. Mol. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Cell Biochem. 2016;417:87–96.
Morrow, N.M.B., A.C.; Samsoondar, J.P.; Seigel, K.E.; Wang, A.; Telford, D.E.; Sutherland, B.G.; O’Dwyer, C.; Steinberg, G.R.; Fullerton, M.D.; et al. The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. J. Lipid Res. 2020;61:387–402.
Wang Z, Y.B., Chen X, Zhou Q, Li H, Chen S, Yin D, He H, He M. Nobiletin regulates ros/adma/ddahii/enos/no pathway and alleviates vascular endothelium injury by iron overload. Biol Trace Elem Res. 2020;198(1):87–97.
Khodabandehloo, H., et al. Molecular and cellular mechanisms linking inflammation to insulin resistance and beta-cell dysfunction. Transl Res. 2016;167(1):228–56.
Chen, P.Y., et al. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes. J Nutr Biochem. 2015;26(5):521–31.
Coll, T., et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283(17):11107–16.
Haghani, K., et al. TNF-alpha knockdown alleviates palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Biochem Biophys Res Commun. 2015;460(4):977–82.
Joshi-Barve, S., et al. Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes. Hepatology. 2007;46(3):823–30.
Shao-Ling, W., et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci. 2009;22(1):32–9.
Volpe, C.M.O., et al. The production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMNCs is enhanced through hyperglycemia in diabetes. Oxidative medicine and cellular longevity; 2014.
Jove, M., et al. Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology. 2006;147(1):552–61.
Macrae, K., et al. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate. J Lipid Res. 2013;54(9):2366–78.
CAS PubMed PubMed Central Google Scholar
Green, C.J., et al. Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor kappab signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochem J. 2011;435(2):463–74.
Pihl, E., et al. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int J Obes (Lond). 2006;30(1):141–6.
Wang, Q., et al. Tectorigenin attenuates palmitate-induced endothelial insulin resistance via targeting ROS-associated inflammation and IRS-1 pathway. PLoS ONE. 2013;8(6):e66417.
CAS PubMed PubMed Central Google Scholar
Zhang, J., et al. Astragalus polysaccharide suppresses palmitate-induced apoptosis in human cardiac myocytes: the role of Nrf1 and antioxidant response. Int J Clin Exp Pathol. 2015;8(3):2515–24.
PubMed PubMed Central Google Scholar
Park, J.M., et al. Cytoprotective effect of hispidin against palmitate-induced lipotoxicity in C2C12 myotubes. Molecules. 2015;20(4):5456–67.
CAS PubMed PubMed Central Google Scholar
Pillon, N.J., et al. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages. Cell Commun Signal. 2012;10(1):30.
CAS PubMed PubMed Central Google Scholar
Klotz, L.O., et al. Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem. 1999;260(3):917–22.
Maloney, E., et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29(9):1370–5.
CAS PubMed PubMed Central Google Scholar
Park, G.B., et al. ROS-mediated JNK/p38-MAPK activation regulates Bax translocation in Sorafenib-induced apoptosis of EBV-transformed B cells. Int J Oncol. 2014;44(3):977–85.
Bognar, E., et al. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol. PLoS ONE. 2013;8(6):e65355.
CAS PubMed PubMed Central Google Scholar
Lee, S.I., et al. Mechanical stress-activated immune response genes via sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol. 2012;168(1):113–24.
Comments (0)