Emerging insights of decoding the genetic blueprint, molecular mechanisms, and future horizons in precision medicine for the treatment of type 2 diabetes

Reed J, Bain S, Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metabolic Syndrome Obes, pp. 3567–602, 2021.

Al-Musawe L. Patterns of polypharmacy and potential overtreatment in elderly people with type 2 diabetes mellitus using Real-world data. Universidade de Lisboa (Portugal); 2021.

Bobga Billa JK. Challenges and opportunities in managing type 2 diabetes mellitus in Sub-Saharan africa: the cases of Nigeria and South Africa. Hochschule für Angewandte Wissenschaften Hamburg; 2023.

Bloomgarden Z, Handelsman Y. Diabetes epidemiology and its implications. Lipoproteins in diabetes mellitus. ed: Springer; 2023. pp. 881–90.

Nativel M, Potier L, Alexandre L, Baillet-Blanco L, Ducasse E, Velho G, et al. Lower extremity arterial disease in patients with diabetes: a contemporary narrative review. Cardiovasc Diabetol. 2018;17:1–14.

Google Scholar 

Bodke H, Wagh V, Kakar G. Diabetes mellitus and prevalence of other comorbid conditions: a systematic review, Cureus, vol. 15, 2023.

Scheen AJ. Clinical Pharmacology of antidiabetic drugs: what can be expected of their use? La Presse Médicale. 2023;52:104158.

PubMed  Google Scholar 

Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem. 2018;152:436–88.

CAS  PubMed  Google Scholar 

Fodor A, Cozma A, Suharoschi R, Sitar-Taut A, Roman G. Clinical and genetic predictors of diabetes drug’s response. Drug Metab Rev. 2019;51:408–27.

CAS  PubMed  Google Scholar 

Nasykhova YA, Tonyan ZN, Mikhailova AA, Danilova MM, Glotov AS. Pharmacogenetics of type 2 diabetes—progress and prospects. Int J Mol Sci. 2020;21:6842.

CAS  PubMed  PubMed Central  Google Scholar 

Sugandh F, Chandio M, Raveena F, Kumar L, Karishma F, Khuwaja S et al., Advances in the management of diabetes mellitus: a focus on personalized medicine, Cureus, vol. 15, 2023.

MacSpadyen S, Shaikh U. Power to Empower: Designing for Type 2 Diabetes, 2024.

Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun, 2023.

Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating challenges and opportunities in multi-omics integration for personalized healthcare, Biomedicines, vol. 12, p. 1496, 2024.

Zafar I, Anwar S, Yousaf W, Nisa FU, Kausar T, ul Ain Q et al., Reviewing methods of deep learning for intelligent healthcare systems in genomics and biomedicine, vol. 86, p. 105263, 2023.

Nyakairu Doreen G. The impact of genetic history on the risk of developing type II Diabetes.

Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: a promising approach toward a personalized management of diabetes. Clin Genet. 2020;98:525–47.

CAS  PubMed  Google Scholar 

Knežević S, Filippi-Arriaga F, Belančić A, Božina T, Mršić-Pelčić J, Vitezić D. Metabolic syndrome drug therapy: the potential interplay of pharmacogenetics and Pharmacokinetic interactions in clinical practice: A narrative review. Diabetology. 2024;5:406–29.

Google Scholar 

Bigossi M, Maroteau C, Dawed AY, Taylor A, Srinivasan S, Melhem AL, et al. A gene risk score using missense variants in SLCO1B1 is associated with earlier onset Statin intolerance. Eur Heart Journal-Cardiovascular Pharmacotherapy. 2023;9:536–45.

Google Scholar 

Ogunjobi TT, Ohaeri PN, Akintola OT, Atanda DO, Orji FP, Adebayo JO et al., Bioinformatics Applications in Chronic Diseases: A Comprehensive Review of Genomic, Transcriptomics, Proteomic, Metabolomics, and Machine Learning Approaches, Medinformatics, 2024.

Jin J, Kim J. Multi-omics and Artificial Intelligence technology for elucidating disease pathophysiology, 2024.

Stankovic B, Kotur N, Nikcevic G, Gasic V, Zukic B, Pavlovic S. Machine learning modeling from omics data as prospective tool for improvement of inflammatory bowel disease diagnosis and clinical classifications, Genes, vol. 12, p. 1438, 2021.

Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, et al. Connected healthcare: improving patient care using digital health technologies. Adv Drug Deliv Rev. 2021;178:113958.

CAS  PubMed  Google Scholar 

Adeghe EP, Okolo CA, Ojeyinka OT. A review of wearable technology in healthcare: monitoring patient health and enhancing outcomes. OARJ Multidisciplinary Stud. 2024;7:142–8.

Google Scholar 

Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in Microbiome research. Nat Reviews Gastroenterol Hepatol. 2020;17:53–64.

Google Scholar 

Li W-Z, Stirling K, Yang J-J, Zhang L. Gut microbiota and diabetes: from correlation to causality and mechanism. World J Diabetes. 2020;11:293.

PubMed  PubMed Central  Google Scholar 

Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, et al. Perspective: leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv Nutr. 2022;13:1450–61.

PubMed  PubMed Central  Google Scholar 

Chen T, Pham G, Fox L, Adler N, Wang X, Zhang J et al., Genomic insights for personalised care in lung cancer and smoking cessation: motivating at-risk individuals toward evidence-based health practices, EBioMedicine, vol. 110, 2024.

Matzke LA, Watson PH. Biobanking for cancer biomarker research: issues and solutions. Biomark Insights. 2020;15:1177271920965522.

PubMed  PubMed Central  Google Scholar 

Inzucchi S, Holt EH. Update in endocrinology, an issue of medical clinics of North america, E-Book: update in endocrinology, an issue of medical clinics of North america, E-Book. Volume 105. Elsevier Health Sciences; 2021.

Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27:5730.

CAS  PubMed  PubMed Central  Google Scholar 

Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, et al. CRISPR/Cas9 gene editing. New hope for Alzheimer’s disease; 2021.

del Bosque-Plata L, Martínez-Martínez E, Espinoza-Camacho MÁ, Gragnoli C. The role of TCF7L2 in type 2 diabetes. Diabetes. 2021;70:1220–8.

CAS  PubMed  PubMed Central  Google Scholar 

Grant SF. The TCF7L2 locus: a genetic window into the pathogenesis of type 1 and type 2 diabetes. Diabetes Care. 2019;42:1624–9.

CAS  PubMed  PubMed Central  Google Scholar 

Wu H-H, Li Y-L, Liu N-J, Yang Z, Tao X-M, Du Y-P, et al. TCF7L2 regulates pancreatic β-cell function through PI3K/AKT signal pathway. Diabetol Metab Syndr. 2019;11:1–9.

CAS  Google Scholar 

Xu L. Transcription factor 7-like 2 (TCF7L2) gene polymorphisms in relation to the risk of type 2 diabetes in three ethnicities, 2018.

Kaur N, Bhatti GK, Kaur S, Bhadada SK, Singh S, Bhatti JS. Transcription factor 7-like 2 gene, rs12255372 (G/T) variant and susceptibility to type 2 diabetes mellitus in North Indians. Gene Rep. 2020;19:100595.

CAS  Google Scholar 

Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol. 2019;247:574–88.

PubMed  PubMed Central  Google Scholar 

Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2023;10:2351–65.

CAS  PubMed  Google Scholar 

Chang JY, Park JH, Park SE, Shon J, Park YJ. The fat mass-and obesity‐associated (FTO) gene to obesity: lessons from mouse models. Obesity. 2018;26:1674–86.

CAS  PubMed  Google Scholar 

Popović A-M, Huđek Turković A, Žuna K, Bačun-Družina V, Rubelj I, Matovinović M. FTO gene polymorphisms at the crossroads of metabolic pathways of obesity and epigenetic influences. Food Technol Biotechnol. 2023;61:14–26.

PubMed  PubMed Central  Google Scholar 

Yahaya TO, Salisu TF. A review of type 2 diabetes mellitus predisposing genes. Curr Diabetes Rev. 2020;16:52–61.

Google Scholar 

Singh J, Tripathi V, Kant R, Lal JA. Epidemiology and genetic architecture of type 2 diabetes mellitus in geographically different Indian populations: A review. Curr Pharmacogenom Personal Med. 2024;21:69–87.

CAS  Google Scholar 

Bowman P. Assessing the glycaemic and CNS response to sulphonylurea therapy in patients with KCNJ11 mutations. University of Exeter (United Kingdom); 2020.

Babar S, Zafar I, Jamal A, Safder A, Zhou H, Almaary KS et al. Informatics approaches to identify potential biomarkers for breast Cancer therapeutic targets using microarray data. J Comput Biophys Chem, 2025.

Aghaei M, Khodadadian A, Elham K-N, Nazari M, Babakhanzadeh E. Major MiRNA involved in insulin secretion and production in beta-cells. Int J Gen Med, pp. 89–97, 2020.

Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of MiRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so Far. J Physiol Biochem. 2020;76:485–502.

PubMed  Google Scholar 

Frias S. miR-375 IS Necessary for the growth of pancreatic beta-cell. Chico: California State University; 2020.

Google Scholar 

Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, et al. The destiny of glucose from a MicroRNA perspective. Front Endocrinol. 2018;9:46.

Google Scholar 

Cignarelli A, Genchi VA, Perrini S, Natalicchio A, Laviola L, Giorgino F. Insulin and insulin receptors in adipose tissue development. Int J Mol Sci. 2019;20:759.

CAS  PubMed  PubMed Central  Google Scholar 

Vukelić I, Šuša B, Klobučar S, Buljević S, Liberati Pršo A-M, Belančić A et al.,., Exosome-Derived microRNAs: Bridging the Gap Between Obesity and Type 2 Diabetes in Diagnosis and Treatment, Diabetology, vol. 5, pp. 706–724, 2024.

Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: emphasis on the role of MicroRNAs. Biomed Pharmacother. 2021;139:111662.

CAS  PubMed  Google Scholar 

Zhu M-D, Li Q, Yuan J-Q, Song F-C, Liu S-H, Zhang L et al. Alleviation of diabetic tendon injury via activation of tendon fibroblasts autophagy under Berberine treatment. JoVE (Journal Visualized Experiments), p. e63224, 2022.

Scherm MG, Daniel C. miRNA-mediated immune regulation in islet autoimmunity and type 1 diabetes. Front Endocrinol. 2020;11:606322.

Google Scholar 

Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The role of MicroRNAs in metabolic syndrome-related oxidative stress. Int J Mol Sci. 2020;21:6902.

PubMed  PubMed Central  Google Scholar 

Nigi L, Grieco GE, Ventriglia G, Brusco N, Mancarella F, Formichi C, et al. MicroRNAs as regulators of insulin signaling: research updates and potential therapeutic perspectives in type 2 diabetes. Int J Mol Sci. 2018;19:3705.

PubMed  PubMed Central  Google Scholar 

Geng T, Liu Y, Xu Y, Jiang Y, Zhang N, Wang Z, et al. H19 LncRNA promotes skeletal muscle insulin sensitivity in part by targeting AMPK. Diabetes. 2018;67:2183–98.

CAS  PubMed  PubMed Central  Google Scholar 

Bi Y, Wang Y, Sun X. Recent advances of LncRNA H19 in diabetes. Horm Metab Res. 2022;54:212–9.

CAS  PubMed  Google Scholar 

Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother. 2023;168:115748.

CAS  PubMed  Google Scholar 

Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics. 2020;12:1–16.

Google Scholar 

Comments (0)

No login
gif