Samuelov, L. et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat. Genet. 45, 1244–1248 (2013).
Article CAS PubMed PubMed Central Google Scholar
Frischmeyer-Guerrerio, P. A. et al. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci. Transl. Med. 5, 195ra194 (2013).
Shoda, T. et al. Desmoplakin and periplakin genetically and functionally contribute to eosinophilic esophagitis. Nat. Commun. 12, 6795 (2021).
Article CAS PubMed PubMed Central Google Scholar
Simon, D. & Simon, H. U. Relationship of skin barrier breakdown and eosinophilic esophagitis. J. Allergy Clin. Immunol. 145, 90–92.e1 (2020).
Paluel-Marmont, C. et al. Eosinophilic esophagitis and colonic mucosal eosinophilia in Netherton syndrome. J. Allergy Clin. Immunol. 139, 2003–2005.e1 (2017).
Rochman, M., Azouz, N. P. & Rothenberg, M. E. Epithelial origin of eosinophilic esophagitis. J. Allergy Clin. Immunol. 142, 10–23 (2018).
Article CAS PubMed PubMed Central Google Scholar
Weidinger, S. et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J. Allergy Clin. Immunol. 118, 214–219 (2006).
Article CAS PubMed Google Scholar
Chang, X. et al. A genome-wide association meta-analysis identifies new eosinophilic esophagitis loci. J. Allergy Clin. Immunol. 149, 988–998 (2022).
Article CAS PubMed Google Scholar
Kottyan, L. C. et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46, 895–900 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kottyan, L. C. et al. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J. Allergy Clin. Immunol. 147, 255–266 (2021).
Article CAS PubMed Google Scholar
Sleiman, P. M. et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5, 5593 (2014).
Ding, J. et al. An esophagus cell atlas reveals dynamic rewiring during active eosinophilic esophagitis and remission. Nat. Commun. 15, 3344 (2024).
Article CAS PubMed PubMed Central Google Scholar
Travers, J. et al. IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci. Rep. 7, 17563 (2017).
Article CAS PubMed PubMed Central Google Scholar
Kaymak, T., Hruz, P. & Niess, J. H. Immune system and microbiome in the esophagus: implications for understanding inflammatory diseases. FEBS J. 289, 4758–4772 (2022).
Article CAS PubMed Google Scholar
Mennini, M. et al. Eosinophilic esophagitis and microbiota: state of the art. Front. Immunol. 12, 595762 (2021).
Article CAS PubMed PubMed Central Google Scholar
Rosekrans, S. L., Baan, B., Muncan, V. & van den Brink, G. R. Esophageal development and epithelial homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G216–G228 (2015).
Article CAS PubMed Google Scholar
Zhang, Y., Bailey, D., Yang, P., Kim, E. & Que, J. The development and stem cells of the esophagus. Development 148, dev193839 (2021).
Article CAS PubMed PubMed Central Google Scholar
Brusilovsky, M. et al. Host–microbiota interactions in the esophagus during homeostasis and allergic inflammation. Gastroenterology 162, 521–534.e8 (2022).
Article CAS PubMed Google Scholar
May, M. & Abrams, J. A. Emerging insights into the esophageal microbiome. Curr. Treat. Options Gastroenterol. 16, 72–85 (2018).
Article PubMed PubMed Central Google Scholar
D’Souza, S. M. et al. Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: a paradigm shift from acid to bacteria? World J. Gastroenterol. 27, 2054–2072 (2021).
Article PubMed PubMed Central Google Scholar
Nobel, Y. R. et al. Increasing dietary fiber intake is associated with a distinct esophageal microbiome. Clin. Transl. Gastroenterol. 9, 199 (2018).
Article PubMed PubMed Central Google Scholar
Dhanisha, S. S., Guruvayoorappan, C., Drishya, S. & Abeesh, P. Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. Hematol. 122, 98–122 (2018).
Dixon, J. et al. Esophageal mucin: an adherent mucus gel barrier is absent in the normal esophagus but present in columnar-lined Barrett’s esophagus. Am. J. Gastroenterol. 96, 2575–2583 (2001).
Article CAS PubMed Google Scholar
Niv, Y. & Fass, R. The role of mucin in GERD and its complications. Nat. Rev. Gastroenterol. Hepatol. 9, 55–59 (2011).
Tian, Y. et al. Mucin 21 confers resistance to apoptosis in an O-glycosylation-dependent manner. Cell Death Discov. 8, 194 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tian, Y. et al. Mucin 21 in esophageal squamous epithelia and carcinomas: analysis with glycoform-specific monoclonal antibodies. Glycobiology 22, 1218–1226 (2012).
Article CAS PubMed Google Scholar
Namiot, Z., Sarosiek, J., Rourk, R. M., Hetzel, D. P. & McCallum, R. W. Human esophageal secretion: mucosal response to luminal acid and pepsin. Gastroenterology 106, 973–981 (1994).
Article CAS PubMed Google Scholar
Wang, Y., Zhu, L., Xia, W. & Wang, F. Anatomy of lymphatic drainage of the esophagus and lymph node metastasis of thoracic esophageal cancer. Cancer Manag. Res. 10, 6295–6303 (2018).
Article PubMed PubMed Central Google Scholar
Yajin, S., Murakami, G., Takeuchi, H., Hasegawa, T. & Kitano, H. The normal configuration and interindividual differences in intramural lymphatic vessels of the esophagus. J. Thorac. Cardiovasc. Surg. 137, 1406–1414 (2009).
Rochman, M. et al. Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 140, 738–749.e3 (2017).
Article PubMed PubMed Central Google Scholar
Rochman, M. et al. Single-cell RNA-Seq of human esophageal epithelium in homeostasis and allergic inflammation. JCI Insight 7, e159093 (2022).
Article PubMed PubMed Central Google Scholar
Blevins, C. H., Iyer, P. G., Vela, M. F. & Katzka, D. A. The esophageal epithelial barrier in health and disease. Clin. Gastroenterol. Hepatol. 16, 608–617 (2018).
Comments (0)