Health effects associated with consumption of processed meat, sugar-sweetened beverages and trans fatty acids: a Burden of Proof study

Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 22, 936–941 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lane, M. M. et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. Br. Med. J. https://doi.org/10.1136/bmj-2023-077310 (2024).

Mendoza, K. et al. Ultra-processed foods and cardiovascular disease: analysis of three large US prospective cohorts and a systematic review and meta-analysis of prospective cohort studies. Lancet Reg. Health Am. 37, 100859 (2024).

PubMed  PubMed Central  Google Scholar 

Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Br. Med. J. https://doi.org/10.1136/bmj.l1451 (2019).

Brauer, M. et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).

Article  Google Scholar 

Deveci, G. & Tek, N. A. N-Nitrosamines: a potential hazard in processed meat products. J. Sci. Food Agric. 104, 2551–2560 (2024).

Article  CAS  PubMed  Google Scholar 

Lee, J.-G. et al. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 199, 632–638 (2016).

Article  CAS  PubMed  Google Scholar 

Zheng, W. & Lee, S.-A. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr. Cancer 61, 437–446 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Hernández, L. et al. Identifying predictors of the visceral fat index in the obese and overweight population to manage obesity: a randomized intervention study. Obes. Facts 13, 403–414 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Huang, Y. et al. Associations of visceral adipose tissue, circulating protein biomarkers, and risk of cardiovascular diseases: a Mendelian randomization analysis. Front. Cell Dev. Biol. 10, 840866 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Marques, M. D. et al. Relation between visceral fat and coronary artery disease evaluated by multidetector computed tomography. Atherosclerosis 209, 481–486 (2010).

Article  CAS  PubMed  Google Scholar 

Oostindjer, M. et al. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci. 97, 583–596 (2014).

Article  PubMed  Google Scholar 

Bellamri, M., Walmsley, S. J. & Turesky, R. J. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ. 43, 29 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lala, P. K. & Chakraborty, C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2, 149–156 (2001).

Article  CAS  PubMed  Google Scholar 

Moorthy, B., Chu, C. & Carlin, D. J. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol. Sci. 145, 5–15 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rao, C. V. Nitric oxide signaling in colon cancer chemoprevention. Mutat. Res. 555, 107–119 (2004).

Article  CAS  PubMed  Google Scholar 

Sánchez-Pimienta, T. G., Batis, C., Lutter, C. K. & Rivera, J. A. Sugar-sweetened beverages are the main sources of added sugar intake in the Mexican population. J. Nutr. 146, 1888S–1896S (2016).

Article  PubMed  Google Scholar 

Vartanian, L. R., Schwartz, M. B. & Brownell, K. D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am. J. Public Health 97, 667–675 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Lara-Castor, L. et al. Sugar-sweetened beverage intakes among adults between 1990 and 2018 in 185 countries. Nat. Commun. 14, 5957 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stender, S., Astrup, A. & Dyerberg, J. Ruminant and industrially produced trans fatty acids: health aspects. Food Nutr. Res. 52, 1651 (2008).

Article  Google Scholar 

Mozaffarian, D. et al. Dietary intake of trans fatty acids and systemic inflammation in women. Am. J. Clin. Nutr. 79, 606–612 (2004).

Article  CAS  PubMed  Google Scholar 

Bendsen, N. T., Christensen, R., Bartels, E. M. & Astrup, A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 65, 773–783 (2011).

Article  CAS  PubMed  Google Scholar 

Mozaffarian, D., Katan, M. B., Ascherio, A., Stampfer, M. J. & Willett, W. C. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354, 1601–1613 (2006).

Article  CAS  PubMed  Google Scholar 

Naghavi, M. et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2100–2132 (2024).

Article  Google Scholar 

Zheng, P. et al. The Burden of Proof studies: assessing the evidence of risk. Nat. Med. 28, 2038–2044 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. https://doi.org/10.1136/bmj.n71 (2021).

Ericson, U. et al. Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am. J. Clin. Nutr. 101, 1065–1080 (2015).

Article  CAS  PubMed  Google Scholar 

Fretts, A. M. et al. Associations of processed meat and unprocessed red meat intake with incident diabetes: the Strong Heart Family Study. Am. J. Clin. Nutr. 95, 752–758 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, X. et al. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Am. J. Clin. Nutr. 118, 1153–1163 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Kurotani, K. et al. Red meat consumption is associated with the risk of type 2 diabetes in men but not in women: a Japan Public Health Center-based Prospective Study. Br. J. Nutr. 110, 1910–1918 (2013).

Article  CAS  PubMed  Google Scholar 

Lajous, M. et al. Processed and unprocessed red meat consumption and incident type 2 diabetes among French women. Diabetes Care 35, 128–130 (2012).

Article  PubMed  Google Scholar 

Liu, M. et al. Quantity and variety of food groups consumption and the risk of diabetes in adults: a prospective cohort study. Clin. Nutr. 40, 5710–5717 (2021).

Article  CAS  PubMed  Google Scholar 

Männistö, S., Kontto, J., Kataja-Tuomola, M., Albanes, D. & Virtamo, J. High processed meat consumption is a risk factor of type 2 diabetes in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention study. Br. J. Nutr. 103, 1817–1822 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Mari-Sanchis, A. et al. Meat consumption and risk of developing type 2 diabetes in the SUN project: a highly educated middle-class population. PLoS ONE 11, e0157990 (2016).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif