Bozkurt, B. et al. HF STATS 2024: heart failure epidemiology and outcomes statistics an updated 2024 report from the Heart Failure Society of America. J. Card. Fail. https://doi.org/10.1016/j.cardfail.2024.07.001 (2024).
Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384, 766–781 (2014).
Article PubMed PubMed Central Google Scholar
Maack, C. et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the translational research committee of the Heart Failure Association–European Society of Cardiology. Eur. Heart J. 39, 4243–4254 (2018).
Article CAS PubMed PubMed Central Google Scholar
Braunwald, E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Prog. Cardiovasc. Dis. 62, 298–302 (2019).
Robertson, J. et al. Body mass index in young women and risk of cardiomyopathy: a long-term follow-up study in Sweden. Circulation 141, 520–529 (2020).
Article PubMed PubMed Central Google Scholar
Robertson, J. et al. Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation 140, 117–125 (2019).
Article CAS PubMed PubMed Central Google Scholar
Setoguchi, S., Stevenson, L. W. & Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 154, 260–266 (2007).
Mamas, M. A. et al. Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland. Eur. J. Heart Fail. 19, 1095–1104 (2017).
Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).
Article CAS PubMed PubMed Central Google Scholar
Neubauer, S. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190–2196 (1997).
Article CAS PubMed Google Scholar
Phan, T. T. et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54, 402–409 (2009).
Mahmod, M. et al. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 20, 88 (2018).
Article PubMed PubMed Central Google Scholar
Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).
Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15, 457–470 (2018).
Article CAS PubMed Google Scholar
Bertero, E. & Maack, C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122, 1460–1478 (2018).
Article CAS PubMed Google Scholar
Ardehali, H. et al. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail. 14, 120–129 (2012).
Article CAS PubMed PubMed Central Google Scholar
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).
Article CAS PubMed Google Scholar
McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).
Article CAS PubMed Google Scholar
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).
Article CAS PubMed Google Scholar
Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).
Kosiborod, M. N. et al. Semaglutide versus placebo in patients with heart failure and mildly reduced or preserved ejection fraction: a pooled analysis of the SELECT, FLOW, STEP-HFpEF, and STEP-HFpEF DM randomised trials. Lancet 404, 949–961 (2024).
Article CAS PubMed Google Scholar
Packer, M. et al. Tirzepatide for heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 392, 427–437 (2025).
Article CAS PubMed Google Scholar
Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).
Article CAS PubMed Google Scholar
Kosiborod, M. N. et al. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N. Engl. J. Med. 390, 1394–1407 (2024).
Article CAS PubMed Google Scholar
Böhm, M., Bewarder, Y. & Kindermann, I. Ejection fraction in heart failure revisited- where does the evidence start? Eur. Heart J. 41, 2363–2365 (2020).
Teerlink, J. R. et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. 384, 105–116 (2021).
Article CAS PubMed Google Scholar
Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).
Article CAS PubMed Google Scholar
Maron, M. S. et al. Aficamten for symptomatic obstructive hypertrophic cardiomyopathy. N. Engl. J. Med. 390, 1849–1861 (2024).
Article CAS PubMed Google Scholar
Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353–363 (2022).
Article PubMed PubMed Central Google Scholar
Saks, V. et al. Cardiac system bioenergetics: metabolic basis of the Frank–Starling law. J. Physiol. 571, 253–273 (2006).
Article CAS PubMed PubMed Central Google Scholar
Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).
Article CAS PubMed Google Scholar
Schramm, M., Klieber, H. G. & Daut, J. The energy expenditure of actomyosin-ATPase, Ca(2+)-ATPase and Na+,K(+)-ATPase in guinea-pig cardiac ventricular muscle. J. Physiol. 481, 647–662 (1994).
Article CAS PubMed PubMed Central Google Scholar
Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).
Comments (0)