Duncker, D. J., Koller, A., Merkus, D. & Canty, J. M. Jr. Regulation of coronary blood flow in health and ischemic heart disease. Prog. Cardiovasc. Dis. 57, 409–422 (2015).
Goodwill, A. G., Dick, G. M., Kiel, A. M. & Tune, J. D. Regulation of coronary blood flow. Compr. Physiol. 7, 321–382 (2017).
Article PubMed PubMed Central Google Scholar
Padro, T. et al. ESC working group on coronary pathophysiology and microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 116, 741–755 (2020).
Article CAS PubMed PubMed Central Google Scholar
Longden, T. A., Zhao, G., Hariharan, A. & Lederer, W. J. Pericytes and the control of blood flow in brain and heart. Annu. Rev. Physiol. 85, 137–164 (2023).
Article CAS PubMed PubMed Central Google Scholar
Avolio, E., Campagnolo, P., Katare, R. & Madeddu, P. The role of cardiac pericytes in health and disease: therapeutic targets for myocardial infarction. Nat. Rev. Cardiol. 21, 106–118 (2024).
Dalkara, T., Ostergaard, L., Heusch, G. & Attwell, D. Pericytes in the brain and heart: functional roles and response to ischemia and reperfusion. Cardiovasc. Res. 120, 2336–2348 (2024).
Article PubMed Central Google Scholar
Kelley, K. O. & Feigl, E. O. Segmental alpha-receptor-mediated vasoconstriction in the canine coronary circulation. Circ. Res. 43, 908–917 (1978).
Article CAS PubMed Google Scholar
Bassenge, E. & Heusch, G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev. Physiol. Biochem. Pharmacol. 116, 77–165 (1990).
Article CAS PubMed Google Scholar
Chilian, W. M., Eastham, C. L. & Marcus, M. L. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am. J. Physiol. 251, H779–H788 (1986).
Ostergaard, L. et al. The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease. Basic Res. Cardiol. 109, 409 (2014).
Article PubMed PubMed Central Google Scholar
Ebrahimi, S. & Bagchi, P. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Sci. Rep. 12, 4304 (2022).
Article CAS PubMed PubMed Central Google Scholar
Camici, P. G., Tschöpe, C., Di Carli, M. F., Rimoldi, O. & Van Linthout, S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 116, 806–816 (2020).
Article CAS PubMed Google Scholar
Heusch, G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic. Res. Cardiol. 117, 1 (2022).
Article PubMed PubMed Central Google Scholar
Toya, T., Nagatomo, Y., Ikegami, Y., Masaki, N. & Adachi, T. Coronary microvascular dysfunction in heart failure patients. Front. Cardiovasc. Med. 10, 1153994 (2023).
Article CAS PubMed PubMed Central Google Scholar
Repetto, A. et al. Coronary atherosclerosis in end-stage idiopathic dilated cardiomyopathy: an innocent bystander? Eur. Heart J. 26, 1519–1527 (2005).
Butt, J. H. et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to N-terminal pro-B-type natriuretic peptide: insights from the DAPA-HF trial. Circ. Heart Fail. 14, 1305–1318 (2021).
Halcox, J. P. et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 106, 653–658 (2002).
Heusch, G. Myocardial stunning and hibernation revisited. Nat. Rev. Cardiol. 18, 522–536 (2021).
Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. Nat. Rev. Cardiol. 19, 265–280 (2022).
Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).
Paolisso, P. et al. Coronary microvascular dysfunction in patients with heart failure: characterization of patterns in HFrEF versus HFpEF. Circ. Heart Fail. 17, e010805 (2024).
Article CAS PubMed Google Scholar
von Mering, G. O. et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women. Results from the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109, 722–725 (2004).
Schächinger, V., Britten, M. B. & Zeiher, A. M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101, 1899–1906 (2000).
Suwaidi, J. A. et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101, 948–954 (2000).
Article CAS PubMed Google Scholar
Sorop, O. et al. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ. Res. 102, 795–803 (2008).
Article CAS PubMed Google Scholar
Siasos, G. et al. Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J. Am. Coll. Cardiol. 71, 2092–2102 (2018).
Samson, W. K., Yosten, G. L. C. & Remme, C. A. A primer on obesity-related cardiomyopathy. Physiol. Rev. 102, 1–6 (2022).
Article CAS PubMed Google Scholar
Khan, M. S. et al. Global epidemiology of heart failure. Nat. Rev. Cardiol. 21, 717–734 (2024).
Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).
Liberale, L. et al. Inflammation, aging, and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liberale, L., Montecucco, F., Tardif, J. C., Libby, P. & Camici, G. G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 41, 2974–2982 (2020).
Article CAS PubMed PubMed Central Google Scholar
Westerhof, N., Boer, C., Lamberts, R. R. & Sipkema, P. Cross-talk between cardiac muscle and coronary vasculature. Physiol. Rev. 86, 1263–1308 (2006).
Article CAS PubMed Google Scholar
Brakenhielm, E. & Alitalo, K. Cardiac lymphatics in health and disease. Nat. Rev. Cardiol. 16, 56–68 (2019).
Comments (0)