Cyclic-di-AMP modulates cellular turgor in response to defects in bacterial cell wall synthesis

Oberkampf, M. et al. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci. Signal. 15, eabn8171 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corrigan, R. M., Bowman, L., Willis, A. R., Kaever, V. & Gründling, A. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J. Biol. Chem. 290, 5826–5839 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehne, F. M. P. et al. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem. 288, 2004–2017 (2013).

Article  CAS  PubMed  Google Scholar 

Devaux, L. et al. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet. 14, e1007342 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Witte, C. E. et al. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4, e00282-13 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stülke, J. & Krüger, L. Cyclic di-AMP signaling in bacteria. Annu. Rev. Microbiol. 74, 159–179 (2020).

Article  PubMed  Google Scholar 

Gundlach, J. et al. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal. 10, eaal3011 (2017).

Article  PubMed  Google Scholar 

Gundlach, J. et al. Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J. Biol. Chem. 294, 9605–9614 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuss, M. F. et al. Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation. Nat. Commun. 14, 3683 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cereija, T. B., Guerra, J. P. L., Jorge, J. M. P. & Morais-Cabral, J. H. c-di-AMP, a likely master regulator of bacterial K+ homeostasis machinery, activates a K+ exporter. Proc. Natl Acad. Sci. USA 118, e2020653118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson, J. W. et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9, 834–839 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Block, K. F., Hammond, M. C. & Breaker, R. R. Evidence for widespread gene control function by the ydaO riboswitch candidate. J. Bacteriol. 192, 3983–3989 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foster, A. J., van den Noort, M. & Poolman, B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol. Mol. Biol. Rev. 88, e00181-23 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stülke, J. A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol. 26, 175–185 (2018).

Article  CAS  PubMed  Google Scholar 

Rohs, P. D. A. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 15.1–15.22 (2021).

Article  Google Scholar 

Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, Y. & Helmann, J. D. Analysis of the role of Bacillus subtilis σM in β‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis. Mol. Microbiol. 83, 623–639 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corrigan, R. M., Abbott, J. C., Burhenne, H., Kaever, V. & Gründling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobras, C. M. et al. Loss of Pde1 function acts as an evolutionary gateway to penicillin resistance in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 120, e2308029120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee, R., Gretes, M., Harlem, C., Basuino, L. & Chambers, H. F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 54, 4900–4902 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dengler, V. et al. Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS ONE 8, e73512 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rismondo, J. et al. Phenotypes associated with the essential diadenylate cyclase CdaA and its potential regulator CdaR in the human pathogen Listeria monocytogenes. J. Bacteriol. 198, 416–426 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whiteley, A. T. et al. c‐di‐AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol. Microbiol. 104, 212–233 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pham, H. T. et al. Cyclic di-AMP oversight of counter-ion osmolyte pools impacts intrinsic cefuroxime resistance in Lactococcus lactis. mBio 12, e00324-21 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Nolan, A. C. et al. Purine nucleosides interfere with c-di-AMP levels and act as adjuvants to re-sensitize MRSA to β-lactam antibiotics. mBio 14, e02478-22 (2022).

PubMed  PubMed Central  Google Scholar 

Galperin, M. Y. All DACs in a row: domain architectures of bacterial and archaeal diadenylate cyclases. J. Bacteriol. 205, e00023-23 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Popham, D. L. & Setlow, P. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J. Bacteriol. 178, 2079–2085 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenberg, J. et al. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J. Biol. Chem. 290, 6596–6606 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cleverley, R. M. et al. The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat. Commun. 10, 261 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Brunet, Y. R., Habib, C., Brogan, A. P., Artzi, L. & Rudner, D. Z. Intrinsically disordered protein regions are required for cell wall homeostasis in Bacillus subtilis. Genes Dev. 36,

Comments (0)

No login
gif