Oberkampf, M. et al. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci. Signal. 15, eabn8171 (2022).
Article CAS PubMed PubMed Central Google Scholar
Corrigan, R. M., Bowman, L., Willis, A. R., Kaever, V. & Gründling, A. Cross-talk between two nucleotide-signaling pathways in Staphylococcus aureus. J. Biol. Chem. 290, 5826–5839 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mehne, F. M. P. et al. Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J. Biol. Chem. 288, 2004–2017 (2013).
Article CAS PubMed Google Scholar
Devaux, L. et al. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet. 14, e1007342 (2018).
Article PubMed PubMed Central Google Scholar
Witte, C. E. et al. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4, e00282-13 (2013).
Article CAS PubMed PubMed Central Google Scholar
Stülke, J. & Krüger, L. Cyclic di-AMP signaling in bacteria. Annu. Rev. Microbiol. 74, 159–179 (2020).
Gundlach, J. et al. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal. 10, eaal3011 (2017).
Gundlach, J. et al. Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J. Biol. Chem. 294, 9605–9614 (2019).
Article CAS PubMed PubMed Central Google Scholar
Fuss, M. F. et al. Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation. Nat. Commun. 14, 3683 (2023).
Article CAS PubMed PubMed Central Google Scholar
Cereija, T. B., Guerra, J. P. L., Jorge, J. M. P. & Morais-Cabral, J. H. c-di-AMP, a likely master regulator of bacterial K+ homeostasis machinery, activates a K+ exporter. Proc. Natl Acad. Sci. USA 118, e2020653118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Nelson, J. W. et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9, 834–839 (2013).
Article CAS PubMed PubMed Central Google Scholar
Block, K. F., Hammond, M. C. & Breaker, R. R. Evidence for widespread gene control function by the ydaO riboswitch candidate. J. Bacteriol. 192, 3983–3989 (2010).
Article CAS PubMed PubMed Central Google Scholar
Foster, A. J., van den Noort, M. & Poolman, B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol. Mol. Biol. Rev. 88, e00181-23 (2024).
Article PubMed PubMed Central Google Scholar
Commichau, F. M., Gibhardt, J., Halbedel, S., Gundlach, J. & Stülke, J. A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol. 26, 175–185 (2018).
Article CAS PubMed Google Scholar
Rohs, P. D. A. & Bernhardt, T. G. Growth and division of the peptidoglycan matrix. Annu. Rev. Microbiol. 75, 15.1–15.22 (2021).
Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).
Article CAS PubMed PubMed Central Google Scholar
Luo, Y. & Helmann, J. D. Analysis of the role of Bacillus subtilis σM in β‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis. Mol. Microbiol. 83, 623–639 (2012).
Article CAS PubMed PubMed Central Google Scholar
Corrigan, R. M., Abbott, J. C., Burhenne, H., Kaever, V. & Gründling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kobras, C. M. et al. Loss of Pde1 function acts as an evolutionary gateway to penicillin resistance in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 120, e2308029120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Banerjee, R., Gretes, M., Harlem, C., Basuino, L. & Chambers, H. F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 54, 4900–4902 (2010).
Article CAS PubMed PubMed Central Google Scholar
Dengler, V. et al. Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS ONE 8, e73512 (2013).
Article CAS PubMed PubMed Central Google Scholar
Rismondo, J. et al. Phenotypes associated with the essential diadenylate cyclase CdaA and its potential regulator CdaR in the human pathogen Listeria monocytogenes. J. Bacteriol. 198, 416–426 (2016).
Article CAS PubMed PubMed Central Google Scholar
Whiteley, A. T. et al. c‐di‐AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol. Microbiol. 104, 212–233 (2017).
Article CAS PubMed PubMed Central Google Scholar
Pham, H. T. et al. Cyclic di-AMP oversight of counter-ion osmolyte pools impacts intrinsic cefuroxime resistance in Lactococcus lactis. mBio 12, e00324-21 (2021).
Article PubMed PubMed Central Google Scholar
Nolan, A. C. et al. Purine nucleosides interfere with c-di-AMP levels and act as adjuvants to re-sensitize MRSA to β-lactam antibiotics. mBio 14, e02478-22 (2022).
PubMed PubMed Central Google Scholar
Galperin, M. Y. All DACs in a row: domain architectures of bacterial and archaeal diadenylate cyclases. J. Bacteriol. 205, e00023-23 (2023).
Article PubMed PubMed Central Google Scholar
Popham, D. L. & Setlow, P. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J. Bacteriol. 178, 2079–2085 (1996).
Article CAS PubMed PubMed Central Google Scholar
Rosenberg, J. et al. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J. Biol. Chem. 290, 6596–6606 (2015).
Article CAS PubMed PubMed Central Google Scholar
Cleverley, R. M. et al. The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes. Nat. Commun. 10, 261 (2019).
Article PubMed PubMed Central Google Scholar
Brunet, Y. R., Habib, C., Brogan, A. P., Artzi, L. & Rudner, D. Z. Intrinsically disordered protein regions are required for cell wall homeostasis in Bacillus subtilis. Genes Dev. 36,
Comments (0)