Mallick, H. et al. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol. 18, 228 (2017).
Article PubMed PubMed Central Google Scholar
Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).
Article PubMed PubMed Central Google Scholar
Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).
Article CAS PubMed Google Scholar
Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).
Article CAS PubMed PubMed Central Google Scholar
Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84, e02627-17 (2018).
Article PubMed PubMed Central Google Scholar
Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 22, 178–193 (2021).
Article CAS PubMed Google Scholar
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).
Article CAS PubMed Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).
Article PubMed PubMed Central Google Scholar
Rodó, X. et al. Microbial richness and air chemistry in aerosols above the PBL confirm 2,000-km long-distance transport of potential human pathogens. Proc. Natl Acad. Sci. USA 121, e2404191121 (2024).
Article PubMed PubMed Central Google Scholar
Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).
Article CAS PubMed Google Scholar
Lappan, R. et al. The atmosphere: a transport medium or an active microbial ecosystem? ISME J. 18, wrae092 (2024).
Article PubMed PubMed Central Google Scholar
Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).
Article CAS PubMed Google Scholar
Heuer, V. B. et al. Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science 370, 1230–1234 (2020).
Article CAS PubMed Google Scholar
Goordial, J. et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 10, 1613–1624 (2016).
Article PubMed PubMed Central Google Scholar
Schulze-Makuch, D. et al. Transitory microbial habitat in the hyperarid Atacama Desert. Proc. Natl Acad. Sci. USA 115, 2670–2675 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wood, C. et al. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME Commun. 4, ycad002 (2024).
Article PubMed PubMed Central Google Scholar
Ling, F., Whitaker, R., LeChevallier, M. W. & Liu, W.-T. Drinking water microbiome assembly induced by water stagnation. ISME J. 12, 1520–1531 (2018).
Article PubMed PubMed Central Google Scholar
Lang, J. M. et al. A microbial survey of the International Space Station (ISS). PeerJ 5, e4029 (2017).
Article PubMed PubMed Central Google Scholar
Tait, A. W., Gagen, E. J., Wilson, S., Tomkins, A. G. & Southam, G. Microbial populations of stony meteorites: substrate controls on first colonizers. Front. Microbiol. 8, 1227 (2017).
Article PubMed PubMed Central Google Scholar
Cubillos, C. F., Aguilar, P., Grágeda, M. & Dorador, C. Microbial communities from the world’s largest lithium reserve, Salar de Atacama, Chile: life at high LiCl concentrations. J. Geophys. Res. Biogeosci. 123, 3668–3681 (2018).
Napoli, A. et al. Snow surface microbial diversity at the detection limit within the vicinity of the Concordia Station, Antarctica. Life 13, 113 (2022).
Article PubMed PubMed Central Google Scholar
Zhong, Z.-P. et al. Clean low-biomass procedures and their application to ancient ice core microorganisms. Front. Microbiol. 9, 344419 (2018).
Shivaji, S. et al. Antarctic ice core samples: culturable bacterial diversity. Res. Microbiol. 164, 70–82 (2013).
Article CAS PubMed Google Scholar
Segal, L. N. & Blaser, M. J. A brave new world: the lung microbiota in an era of change. Ann. Am. Thorac. Soc. 11, S21–S27 (2014).
Article PubMed PubMed Central Google Scholar
Stinson, L. F., Ma, J., Sindi, A. S. & Geddes, D. T. Methodological approaches for studying the human milk microbiome. Nutr. Rev. 81, 705–715 (2023).
Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).
Article CAS PubMed PubMed Central Google Scholar
Tan, C. C. S. et al. No evidence for a common blood microbiome based on a population study of 9,770 healthy humans. Nat. Microbiol. 8, 973–985 (2023).
Article CAS PubMed PubMed Central Google Scholar
Bintarti, A. F., Sulesky-Grieb, A., Stopnisek, N. & Shade, A. Endophytic microbiome variation among single plant seeds. Phytobiomes J. 6, 45–55 (2022).
Walsh, C. M., Becker-Uncapher, I., Carlson, M. & Fierer, N. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. ISME J. 15, 2748–2762 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).
Article CAS PubMed PubMed Central Google Scholar
Belilla, J. et al. Active microbial airborne dispersal and biomorphs as confounding factors for life detection in the cell-degrading brines of the polyextreme Dallol Geothermal Field. mBio 13, e0030722 (2022).
Article PubMed PubMed Central Google Scholar
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).
Comments (0)