Hoarau, J. J. et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927 (2010).
Article CAS PubMed Google Scholar
Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA 108, 11223–11228 (2011).
Article CAS PubMed PubMed Central Google Scholar
Lin, W. H., Kouyos, R. D., Adams, R. J., Grenfell, B. T. & Griffin, D. E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc. Natl Acad. Sci. USA 109, 14989–14994 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hirsch, A. J. et al. Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 13, e1006219 (2017).
Article PubMed PubMed Central Google Scholar
Paz-Bailey, G. et al. Persistence of Zika virus in body fluids—final report.N. Engl. J. Med. 379, 1234–1243 (2018).
Article CAS PubMed Google Scholar
Fragkoudis, R., Dixon-Ballany, C. M., Zagrajek, A. K., Kedzierski, L. & Fazakerley, J. K. Following acute encephalitis, semliki forest virus is undetectable in the brain by infectivity assays but functional virus RNA capable of generating infectious virus persists for life. Viruses https://doi.org/10.3390/v10050273 (2018).
Den Boon, S. et al. Ebola virus infection associated with transmission from survivors. Emerg. Infect. Dis. 25, 249–255 (2019).
Lion, T. Adenovirus persistence, reactivation, and clinical management. FEBS Lett. 593, 3571–3582 (2019).
Article CAS PubMed Google Scholar
Owusu, D. et al. Persistent SARS-CoV-2 RNA shedding without evidence of infectiousness: a cohort study of individuals with COVID-19. J. Infect. Dis. 224, 1362–1371 (2021).
Article CAS PubMed Google Scholar
Yang, B. et al. Clinical and molecular characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nat. Commun. 12, 3501 (2021).
Article CAS PubMed PubMed Central Google Scholar
Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).
Article CAS PubMed PubMed Central Google Scholar
Castro, Í. A. et al. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat Microbiol. https://doi.org/10.1038/s41564-024-01805-8 (2024).
Ghafari, M. et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 626, 1094–1101 (2024).
Article CAS PubMed PubMed Central Google Scholar
Fischer, W. A. et al. Ebola virus ribonucleic acid detection in semen more than two years after resolution of acute Ebola virus infection. Open Forum Infect. Dis. 4, ofx155 (2017).
Article PubMed PubMed Central Google Scholar
Borges, V. et al. Long-term evolution of SARS-CoV-2 in an immunocompromised patient with non-hodgkin lymphoma. mSphere 6, e0024421 (2021).
Chen, B., Julg, B., Mohandas, S., Bradfute, S. B. & Force, R. M. P. T. Viral persistence, reactivation, and mechanisms of long COVID. eLife https://doi.org/10.7554/eLife.86015 (2023).
Griffin, D. E. Why does viral RNA sometimes persist after recovery from acute infections? PLoS Biol. 20, e3001687 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tohma, K. et al. Viral intra-host evolution in immunocompetent children contributes to human norovirus diversification at the global scale. Emerg. Microbes Infect. 10, 1717–1730 (2021).
Article CAS PubMed PubMed Central Google Scholar
Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).
Article CAS PubMed Google Scholar
Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).
Article CAS PubMed Google Scholar
Zehn, D. & Wherry, E. J. Immune memory and exhaustion: clinically relevant lessons from the LCMV model. Adv. Exp. Med Biol. 850, 137–152 (2015).
Article CAS PubMed Google Scholar
Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).
Article CAS PubMed Google Scholar
Nakamoto, N. et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134, 1927–1937 (2008). 1937 e1921-1922.
Article CAS PubMed Google Scholar
Tomov, V. T. et al. Differentiation and protective capacity of virus-specific CD8(+) T cells suggest murine norovirus persistence in an immune-privileged enteric niche. Immunity 47, 723–738 e725 (2017).
Article CAS PubMed PubMed Central Google Scholar
Tomov, V. T. et al. Persistent enteric murine norovirus infection is associated with functionally suboptimal virus-specific CD8 T cell responses. J. Virol. 87, 7015–7031 (2013).
Article CAS PubMed PubMed Central Google Scholar
Strine, M. S. et al. Intestinal tuft cell immune privilege enables norovirus persistence. Sci. Immunol. 9, eadi7038 (2024).
Article CAS PubMed PubMed Central Google Scholar
Frank, G. M. et al. Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency. J. Immunol. 184, 277–286 (2010).
Article CAS PubMed Google Scholar
van den Berg, S. P. H. et al. The hallmarks of CMV-specific CD8 T-cell differentiation. Med. Microbiol. Immunol. 208, 365–373 (2019).
Article PubMed PubMed Central Google Scholar
Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).
Article CAS PubMed Google Scholar
Nice, T. J. et al. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273 (2015).
Article CAS PubMed Google Scholar
Knipe, D. M. & Howley, P. M. Fields Virology 6th edn Vol. 1 (Wolters Kluwer/Lippincott Williams & Wilkins Health, 2013).
Koopmans, M. P., Bijen, M. H., Monroe, S. S. & Vinje, J. Age-stratified seroprevalence of neutralizing antibodies to astrovirus types 1 to 7 in humans in The Netherlands. Clin. Diagn. Lab. Immunol. 5, 33–37 (1998).
Article CAS PubMed PubMed Central Google Scholar
Ingle, H. et al. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-lambda response in vivo and in enteroid cultures. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00387-6 (2021).
Cortez, V. et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat. Commun. 11, 2097 (2020).
Article CAS PubMed PubMed Central Google Scholar
Cortez, V. et al. Ch
Comments (0)