Environmental stress drives clearance of a persistent enteric virus in mice

Hoarau, J. J. et al. Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184, 5914–5927 (2010).

Article  CAS  PubMed  Google Scholar 

Lanford, R. E. et al. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA. Proc. Natl Acad. Sci. USA 108, 11223–11228 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, W. H., Kouyos, R. D., Adams, R. J., Grenfell, B. T. & Griffin, D. E. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc. Natl Acad. Sci. USA 109, 14989–14994 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirsch, A. J. et al. Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 13, e1006219 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Paz-Bailey, G. et al. Persistence of Zika virus in body fluids—final report.N. Engl. J. Med. 379, 1234–1243 (2018).

Article  CAS  PubMed  Google Scholar 

Fragkoudis, R., Dixon-Ballany, C. M., Zagrajek, A. K., Kedzierski, L. & Fazakerley, J. K. Following acute encephalitis, semliki forest virus is undetectable in the brain by infectivity assays but functional virus RNA capable of generating infectious virus persists for life. Viruses https://doi.org/10.3390/v10050273 (2018).

Den Boon, S. et al. Ebola virus infection associated with transmission from survivors. Emerg. Infect. Dis. 25, 249–255 (2019).

Article  Google Scholar 

Lion, T. Adenovirus persistence, reactivation, and clinical management. FEBS Lett. 593, 3571–3582 (2019).

Article  CAS  PubMed  Google Scholar 

Owusu, D. et al. Persistent SARS-CoV-2 RNA shedding without evidence of infectiousness: a cohort study of individuals with COVID-19. J. Infect. Dis. 224, 1362–1371 (2021).

Article  CAS  PubMed  Google Scholar 

Yang, B. et al. Clinical and molecular characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nat. Commun. 12, 3501 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro, Í. A. et al. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat Microbiol. https://doi.org/10.1038/s41564-024-01805-8 (2024).

Ghafari, M. et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 626, 1094–1101 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fischer, W. A. et al. Ebola virus ribonucleic acid detection in semen more than two years after resolution of acute Ebola virus infection. Open Forum Infect. Dis. 4, ofx155 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Borges, V. et al. Long-term evolution of SARS-CoV-2 in an immunocompromised patient with non-hodgkin lymphoma. mSphere 6, e0024421 (2021).

Article  PubMed  Google Scholar 

Chen, B., Julg, B., Mohandas, S., Bradfute, S. B. & Force, R. M. P. T. Viral persistence, reactivation, and mechanisms of long COVID. eLife https://doi.org/10.7554/eLife.86015 (2023).

Griffin, D. E. Why does viral RNA sometimes persist after recovery from acute infections? PLoS Biol. 20, e3001687 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tohma, K. et al. Viral intra-host evolution in immunocompetent children contributes to human norovirus diversification at the global scale. Emerg. Microbes Infect. 10, 1717–1730 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

Article  CAS  PubMed  Google Scholar 

Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

Article  CAS  PubMed  Google Scholar 

Zehn, D. & Wherry, E. J. Immune memory and exhaustion: clinically relevant lessons from the LCMV model. Adv. Exp. Med Biol. 850, 137–152 (2015).

Article  CAS  PubMed  Google Scholar 

Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

Article  CAS  PubMed  Google Scholar 

Nakamoto, N. et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134, 1927–1937 (2008). 1937 e1921-1922.

Article  CAS  PubMed  Google Scholar 

Tomov, V. T. et al. Differentiation and protective capacity of virus-specific CD8(+) T cells suggest murine norovirus persistence in an immune-privileged enteric niche. Immunity 47, 723–738 e725 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomov, V. T. et al. Persistent enteric murine norovirus infection is associated with functionally suboptimal virus-specific CD8 T cell responses. J. Virol. 87, 7015–7031 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strine, M. S. et al. Intestinal tuft cell immune privilege enables norovirus persistence. Sci. Immunol. 9, eadi7038 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frank, G. M. et al. Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency. J. Immunol. 184, 277–286 (2010).

Article  CAS  PubMed  Google Scholar 

van den Berg, S. P. H. et al. The hallmarks of CMV-specific CD8 T-cell differentiation. Med. Microbiol. Immunol. 208, 365–373 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

Article  CAS  PubMed  Google Scholar 

Nice, T. J. et al. Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347, 269–273 (2015).

Article  CAS  PubMed  Google Scholar 

Knipe, D. M. & Howley, P. M. Fields Virology 6th edn Vol. 1 (Wolters Kluwer/Lippincott Williams & Wilkins Health, 2013).

Koopmans, M. P., Bijen, M. H., Monroe, S. S. & Vinje, J. Age-stratified seroprevalence of neutralizing antibodies to astrovirus types 1 to 7 in humans in The Netherlands. Clin. Diagn. Lab. Immunol. 5, 33–37 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ingle, H. et al. Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-lambda response in vivo and in enteroid cultures. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00387-6 (2021).

Cortez, V. et al. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat. Commun. 11, 2097 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortez, V. et al. Ch

Comments (0)

No login
gif