Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001). The pioneering treatise setting out philosophy, practice and potential of click chemistry.
Article PubMed CAS Google Scholar
Patterson, D. M., Nazarova, L. A. & Prescher, J. A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014).
Article PubMed CAS Google Scholar
Bertozzi, C. A special virtual issue celebrating the 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. ACS Cent. Sci. 9, 558–559 (2023).
Article PubMed CAS Google Scholar
Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).
Article PubMed CAS Google Scholar
Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).
Article PubMed CAS Google Scholar
Bauer, D., Cornejo, M. A., Hoang, T. T., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: an update. Bioconjug. Chem. 34, 1925–1950 (2023).
Article PubMed PubMed Central CAS Google Scholar
Srinivasan, S. et al. SQ3370, the first clinical click chemistry-activated cancer therapeutic, shows safety in humans and translatability across species. Preprint at bioRxiv https://doi.org/10.1101/2023.03.28.534654 (2023).
Sun, F. & Zhang, W.-B. Genetically encoded click chemistry. Chin. J. Chem. 38, 894–896 (2020).
Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).
Article PubMed CAS Google Scholar
Shah, N. H. & Muir, T. W. Inteins: nature’s gift to protein chemists. Chem. Sci. 5, 446–461 (2014).
Article PubMed CAS Google Scholar
Wu, H., Hu, Z. & Liu, X.-Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl Acad. Sci. USA 95, 9226–9231 (1998). The discovery of how a DNA polymerase component from a cyanobacterium is expressed in two fragments, which reconstitute and splice together the functional protein, leading on to the future identification of many split inteins and powerful tools for click biology.
Article PubMed PubMed Central CAS Google Scholar
Eryilmaz, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).
Article PubMed PubMed Central CAS Google Scholar
Mills, K. V., Johnson, M. A. & Perler, F. B. Protein splicing: how inteins escape from precursor proteins. J. Biol. Chem. 289, 14498–14505 (2014).
Article PubMed PubMed Central CAS Google Scholar
Anastassov, S., Filo, M. & Khammash, M. Inteins: a Swiss army knife for synthetic biology. Biotechnol. Adv. 73, 108349 (2024).
Article PubMed CAS Google Scholar
Bhagawati, M. et al. In cellulo protein semi-synthesis from endogenous and exogenous fragments using the ultra-fast split Gp41-1 intein. Angew. Chem. Int. Ed. Engl. 59, 21007–21015 (2020).
Article PubMed PubMed Central CAS Google Scholar
Pinto, F., Thornton, E. L. & Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 11, 1529 (2020).
Article PubMed PubMed Central CAS Google Scholar
Carvajal-Vallejos, P., Pallisse, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012).
Article PubMed PubMed Central CAS Google Scholar
Gramespacher, J. A., Stevens, A. J., Thompson, R. E. & Muir, T. W. Improved protein splicing using embedded split inteins. Protein Sci. 27, 614–619 (2018).
Article PubMed PubMed Central CAS Google Scholar
Bhagawati, M. et al. A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc. Natl Acad. Sci. USA 116, 22164–22172 (2019). This study overcomes the obstacle of many split inteins requiring reducing conditions, optimizing a bacteriophage split intein that contains key reactive serines instead of cysteines, allowing molecular surgery at the cell surface.
Article PubMed PubMed Central CAS Google Scholar
Burton, A. J., Haugbro, M., Parisi, E. & Muir, T. W. Live-cell protein engineering with an ultra-short split intein. Proc. Natl Acad. Sci. USA 117, 12041–12049 (2020). Lake Vida has ice all year round and contains water with exceptional salinity. From this frigid landscape, a split intein platform was shown to react with outstanding speed and efficiency, allowing precision editing on histones within living cells.
Article PubMed PubMed Central CAS Google Scholar
Neugebauer, M., Böcker, J. K., Matern, J. C. J., Pietrokovski, S. & Mootz, H. D. Development of a screening system for inteins active in protein splicing based on intein insertion into the LacZα-peptide. Biol. Chem. 398, 57–67 (2017).
Article PubMed CAS Google Scholar
Popa, M. P., McKelvey, T. A., Hempel, J. & Hendrix, R. W. Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits. J. Virol. 65, 3227–3237 (1991).
Article PubMed PubMed Central CAS Google Scholar
Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).
Article PubMed CAS Google Scholar
Kang, H. J. & Baker, E. N. Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem. Sci. 36, 229–237 (2011).
Article PubMed CAS Google Scholar
Zakeri, B. & Howarth, M. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J. Am. Chem. Soc. 132, 4526–4527 (2010).
Article PubMed CAS Google Scholar
Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).
Article PubMed PubMed Central CAS Google Scholar
Keeble, A. H. et al. Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew. Chem. Int. Ed. Engl. 56, 16521–16525 (2017).
Article PubMed PubMed Central CAS Google Scholar
Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).
Article PubMed PubMed Central CAS Google Scholar
Zhang, S. et al. One-step construction of circularized nanodiscs using SpyCatcher–SpyTag. Nat. Commun. 12, 5451 (2021).
Article PubMed PubMed Central CAS Google Scholar
Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).
Comments (0)