Click biology highlights the opportunities from reliable biological reactions

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001). The pioneering treatise setting out philosophy, practice and potential of click chemistry.

Article  PubMed  CAS  Google Scholar 

Patterson, D. M., Nazarova, L. A. & Prescher, J. A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014).

Article  PubMed  CAS  Google Scholar 

Bertozzi, C. A special virtual issue celebrating the 2022 Nobel Prize in Chemistry for the development of click chemistry and bioorthogonal chemistry. ACS Cent. Sci. 9, 558–559 (2023).

Article  PubMed  CAS  Google Scholar 

Oliveira, B. L., Guo, Z. & Bernardes, G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

Article  PubMed  CAS  Google Scholar 

Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

Article  PubMed  CAS  Google Scholar 

Bauer, D., Cornejo, M. A., Hoang, T. T., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: an update. Bioconjug. Chem. 34, 1925–1950 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Srinivasan, S. et al. SQ3370, the first clinical click chemistry-activated cancer therapeutic, shows safety in humans and translatability across species. Preprint at bioRxiv https://doi.org/10.1101/2023.03.28.534654 (2023).

Sun, F. & Zhang, W.-B. Genetically encoded click chemistry. Chin. J. Chem. 38, 894–896 (2020).

Article  CAS  Google Scholar 

Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

Article  PubMed  CAS  Google Scholar 

Shah, N. H. & Muir, T. W. Inteins: nature’s gift to protein chemists. Chem. Sci. 5, 446–461 (2014).

Article  PubMed  CAS  Google Scholar 

Wu, H., Hu, Z. & Liu, X.-Q. Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc. Natl Acad. Sci. USA 95, 9226–9231 (1998). The discovery of how a DNA polymerase component from a cyanobacterium is expressed in two fragments, which reconstitute and splice together the functional protein, leading on to the future identification of many split inteins and powerful tools for click biology.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eryilmaz, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mills, K. V., Johnson, M. A. & Perler, F. B. Protein splicing: how inteins escape from precursor proteins. J. Biol. Chem. 289, 14498–14505 (2014).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anastassov, S., Filo, M. & Khammash, M. Inteins: a Swiss army knife for synthetic biology. Biotechnol. Adv. 73, 108349 (2024).

Article  PubMed  CAS  Google Scholar 

Bhagawati, M. et al. In cellulo protein semi-synthesis from endogenous and exogenous fragments using the ultra-fast split Gp41-1 intein. Angew. Chem. Int. Ed. Engl. 59, 21007–21015 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pinto, F., Thornton, E. L. & Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 11, 1529 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carvajal-Vallejos, P., Pallisse, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gramespacher, J. A., Stevens, A. J., Thompson, R. E. & Muir, T. W. Improved protein splicing using embedded split inteins. Protein Sci. 27, 614–619 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhagawati, M. et al. A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc. Natl Acad. Sci. USA 116, 22164–22172 (2019). This study overcomes the obstacle of many split inteins requiring reducing conditions, optimizing a bacteriophage split intein that contains key reactive serines instead of cysteines, allowing molecular surgery at the cell surface.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burton, A. J., Haugbro, M., Parisi, E. & Muir, T. W. Live-cell protein engineering with an ultra-short split intein. Proc. Natl Acad. Sci. USA 117, 12041–12049 (2020). Lake Vida has ice all year round and contains water with exceptional salinity. From this frigid landscape, a split intein platform was shown to react with outstanding speed and efficiency, allowing precision editing on histones within living cells.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Neugebauer, M., Böcker, J. K., Matern, J. C. J., Pietrokovski, S. & Mootz, H. D. Development of a screening system for inteins active in protein splicing based on intein insertion into the LacZα-peptide. Biol. Chem. 398, 57–67 (2017).

Article  PubMed  CAS  Google Scholar 

Popa, M. P., McKelvey, T. A., Hempel, J. & Hendrix, R. W. Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits. J. Virol. 65, 3227–3237 (1991).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

Article  PubMed  CAS  Google Scholar 

Kang, H. J. & Baker, E. N. Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem. Sci. 36, 229–237 (2011).

Article  PubMed  CAS  Google Scholar 

Zakeri, B. & Howarth, M. Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J. Am. Chem. Soc. 132, 4526–4527 (2010).

Article  PubMed  CAS  Google Scholar 

Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Keeble, A. H. et al. Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew. Chem. Int. Ed. Engl. 56, 16521–16525 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Keeble, A. H. et al. Approaching infinite affinity through engineering of peptide–protein interaction. Proc. Natl Acad. Sci. USA 116, 26523–26533 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang, S. et al. One-step construction of circularized nanodiscs using SpyCatcher–SpyTag. Nat. Commun. 12, 5451 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. Proc. Natl Acad. Sci. USA 113, 1202–1207 (2016).

Article  PubMed 

Comments (0)

No login
gif