Modified SPPS Protocol for the Synthesis of Novel Antimicrobial Peptides

Al Musaimi O, de la Torre BG, Albericio F (2020) Greening Fmoc/tBu solid-phase peptide synthesis. Green Chem 22:996–1018. https://doi.org/10.1039/C9GC03982A

Article  CAS  Google Scholar 

Cole AM, Kim Y-H, Tahk S, Hong T, Weis P, Waring AJ, Ganz T (2001) Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett 504:5–10. https://doi.org/10.1016/S0014-5793(01)02731-4

Article  CAS  PubMed  Google Scholar 

Collins JM, Singh SK, White TA, Cesta DJ, Simpson CL, Tubb LJ, Houser CL (2023) Total wash elimination for solid phase peptide synthesis. Nat Commun 14:8168. https://doi.org/10.1038/s41467-023-44074-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Torre BG, Albericio F (2024) The pharmaceutical industry in 2023: an analysis of FDA drug approvals from the perspective of molecules. Molecules 29:585. https://doi.org/10.3390/molecules29030585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrazzano L, Catani M, Cavazzini A, Martelli G, Corbisiero D, Cantelmi P, Fantoni T, Mattellone A, De Luca C, Felletti S et al (2022) Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges. Green Chem 24:975–1020. https://doi.org/10.1039/D1GC04387K

Article  CAS  Google Scholar 

https://www.genscript.com/recommended_peptide_purity.html#:~:text=Peptides%20with%20purity%20greater%20than,are%20excellent%20for%20quantitative%20analysis.

https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php.

Jad YE, Acosta GA, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F (2016) 2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis. Amino Acids 48:419–426. https://doi.org/10.1007/s00726-015-2095-x

Article  CAS  PubMed  Google Scholar 

Jad YE, Kumar A, El-Faham A, de la Torre BG, Albericio F (2019) Green transformation of solid-phase peptide synthesis. ACS Sustain Chem Eng 7:3671–3683. https://doi.org/10.1021/acssuschemeng.8b06520

Article  CAS  Google Scholar 

Jadhav S, Martin V, Egelund PHG, Johansson Castro H, Krüger T, Richner F, Thordal Le Quement S, Albericio F, Dettner F, Lechner C et al (2021) Replacing DMF in solid-phase peptide synthesis: varying the composition of green binary solvent mixtures as a tool to mitigate common side-reactions. Green Chem 23:3312–3321. https://doi.org/10.1039/D1GC00604E

Article  CAS  Google Scholar 

Jakkampudi T, Lin Q, Mitra S, Vijai A, Qin W, Kang A, Chen J, Ryan E, Wang R, Gong Y et al (2023) Lung SPLUNC1 peptide derivatives in the lipid membrane headgroup kill gram-negative planktonic and biofilm bacteria. Biomacromol 24:2804–2815. https://doi.org/10.1021/acs.biomac.3c00218

Article  CAS  Google Scholar 

Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK, Kenworthy MN, Gallou F, Lopez J, Koenig SG et al (2024) Process mass intensity (PMI): a holistic analysis of current peptide manufacturing processes informs sustainability in peptide synthesis. J Org Chem 89:4261–4282. https://doi.org/10.1021/acs.joc.3c01494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Sharma A, de la Torre BG, Albericio F (2022) In situ Fmoc removal—a sustainable solid-phase peptide synthesis approach. Green Chem 24:4887–4896. https://doi.org/10.1039/D2GC00963C

Article  CAS  Google Scholar 

Lata M, Telang V, Gupta P, Pant G, Kalyan M, Arockiaraj J, Pasupuleti M (2023) Evolutionary and in silico guided development of novel peptide analogues for antibacterial activity against ESKAPE pathogens. Curr Res Microb Sci 4:100183. https://doi.org/10.1016/j.crmicr.2023.100183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lata M, Telang V, Gupta P, Pant G, Kalyan M, Arockiaraj J, Pasupuleti M (2024) Synthetic short cryptic antimicrobial peptides as templates for the development of novel biotherapeutics against WHO priority pathogen. Int J Pept Res Ther 30:57. https://doi.org/10.1007/s10989-024-10632-8

Article  CAS  Google Scholar 

Leveraro S, D’Accolti M, Marzola E, Caselli E, Guerrini R, Rowinska-Zyrek M, Remelli M, Bellotti D (2025) Positively charged residues play a significant role in enhancing the antibacterial activity of calcitermin. J Inorg Biochem 262:112761. https://doi.org/10.1016/j.jinorgbio.2024.112761

Article  CAS  PubMed  Google Scholar 

Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL (2023) A systematic review of second-line treatments in antiviral resistant strains of HSV-1, HSV-2, and VZV. Cureus 15:e35958. https://doi.org/10.7759/cureus.35958

Article  PubMed  PubMed Central  Google Scholar 

López-Pérez PM, Grimsey E, Bourne L, Mikut R, Hilpert K (2017) Screening and optimizing antimicrobial peptides by using SPOT-synthesis. Front Chem 15:15–16. https://doi.org/10.3389/fchem.2017.00025

Article  CAS  Google Scholar 

Mthethwa N, Nandhini KP, Kumar A, Sharma A, de la Torre BG, Albericio F (2024) Toward sustainable solid-phase peptide synthesis strategy—in situ Fmoc removal. Green Chem Lett Rev 17:2325993. https://doi.org/10.1080/17518253.2024.2325993

Article  CAS  Google Scholar 

Rahangdale R, Tender T, Balireddy S, Goswami K, Pasupuleti M, Hariharapura RC (2023) A critical review on antiviral peptides derived from viral glycoproteins and host receptors to decoy herpes simplex virus. Microb Biotechnol 16:2036–2052. https://doi.org/10.1111/1751-7915.14342

Article  PubMed  PubMed Central  Google Scholar 

Rahangdale R, Ghormode P, Tender T, Balireddy S, Birangal S, Kishore R, Mohammad FS, Pasupuleti M, Chandrashekar HR (2024) Anti-HSV activity of nectin-1-derived peptides targeting HSV gD: an in-silico and in-vitro approach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2024.2349525

Article  PubMed  Google Scholar 

Sampaio B, de Oliveira K, Lopes Leite M, Albuquerque Cunha V, Brito da Cunha N, Luiz Franco O (2023) Challenges and advances in antimicrobial peptide development. Drug Discov Today 28:103629. https://doi.org/10.1016/j.drudis.2023.103629

Article  CAS  Google Scholar 

Sharma A, Singh LR (2024) An insight into the pharmacology of cysteine/methionine containing peptide drugs. Eur J Med Chem 271:116456. https://doi.org/10.1016/j.ejmech.2024.116456

Article  CAS  PubMed  Google Scholar 

Sherwood J, Albericio F, de la Torre BG (2024) N, N-dimethyl formamide european restriction demands solvent substitution in research and development. Chemsuschem 17:e202301639. https://doi.org/10.1002/cssc.202301639

Article  CAS  PubMed  Google Scholar 

Vlahos R (2021) SPLUNC1 α6 Peptidomimetic: a novel therapeutic for asthma. Am J Respir Cell Mol Biol 66:241–242. https://doi.org/10.1165/rcmb.2021-0451ED

Article  PubMed Central  Google Scholar 

Warthen JL, Lueckheide MJ (2024) Peptides as targeting agents and therapeutics: a brief overview. Biomacromol 25:6923–6935. https://doi.org/10.1021/acs.biomac.4c00518

Article  CAS  Google Scholar 

Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP (2018) Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS ONE 13:e0203621. https://doi.org/10.1371/journal.pone.0203621

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif