Alarcón-Arís D, Recasens A, Galofré M, Carballo-Carbajal I, Zacchi N, Ruiz-Bronchal E, Pavia-Collado R, Chica R, Ferrés-Coy A, Santos M, Revilla R, Montefeltro A, Fariñas I, Artigas F, Vila M, Bortolozzi A (2018) Selective α-Synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for Parkinson’s disease. Mol Ther 26(2):550–567. https://doi.org/10.1016/j.ymthe.2017.11.015
Article CAS PubMed Google Scholar
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C (2022) Environmental impact on the epigenetic mechanisms underlying Parkinson’s disease pathogenesis: A narrative review. Brain Sci 12(2):175. https://doi.org/10.3390/brainsci12020175
Article CAS PubMed PubMed Central Google Scholar
Balupuri A, Choi K-E, Kang NS (2019) Computational insights into the role of α-strand/sheet in aggregation of α-synuclein. Sci Rep 9(1):59. https://doi.org/10.1038/s41598-018-37276-1
Article CAS PubMed PubMed Central Google Scholar
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A (2023) Strategic approaches to improvise peptide drugs as next generation therapeutics. Int J Pept Res Ther 29(4):61. https://doi.org/10.1007/s10989-023-10524-3PMID: 37251528; PMCID: PMC10206374
Article CAS PubMed PubMed Central Google Scholar
Bavinton CE, Sternke-Hoffmann R, Yamashita T, Knipe PC, Hamilton AD, Luo J, Thompson S (2022) Rationally designed helical peptidomimetics disrupt α-synuclein fibrillation. Chem Commun 58(33):5132–5135. https://doi.org/10.1039/D2CC00212D
Berman HM (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
Article CAS PubMed PubMed Central Google Scholar
Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta (BBA) Proteins Proteom 1804(7):1405–1412
Bigi A, Cascella R, Cecchi C (2023) α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regeneration Res 18(11):2332–2342. https://doi.org/10.4103/1673-5374.371345
Borah P, Sanjeev A, Mattaparthi VSK (2021) Computational investigation on the effect of Oleuropein aglycone on the α-synuclein aggregation. J Biomol Struct Dynamics 39(4):1259–1270. https://doi.org/10.1080/07391102.2020.1728384
Bridi JC, Hirth F (2018) Mechanisms of α-Synuclein induced synaptopathy in Parkinson’s disease. Front NeuroSci 12. https://doi.org/10.3389/fnins.2018.00080
Cheruvara H, Allen-Baume VL, Kad NM, Mason JM (2015) Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-Synuclein aggregation. J Biol Chem 290(12):7426–7435. https://doi.org/10.1074/jbc.M114.620484
Article CAS PubMed PubMed Central Google Scholar
Cui J, Feng Y, Yang T, Wang X, Tang H (2023) Computer-Aided designing peptide inhibitors of human hematopoietic prostaglandin D2 synthase combined molecular Docking and molecular dynamics simulation. Molecules 28(15):5933. https://doi.org/10.3390/molecules28155933
Article CAS PubMed PubMed Central Google Scholar
Dai Y, Yue N, Huang W, Qian H (2020) Fragment synthesis of disulfide-containing peptides. MethodsX 7:100945. https://doi.org/10.1016/j.mex.2020.100945
Article CAS PubMed PubMed Central Google Scholar
Dansithong W, Paul S, Scoles DR, Pulst SM, Huynh DP (2015) Generation of SNCA cell models using zinc finger nuclease (ZFN) technology for efficient High-Throughput drug screening. PLoS ONE 10(8):e0136930. https://doi.org/10.1371/journal.pone.0136930
Article CAS PubMed PubMed Central Google Scholar
Datki Z, Juhász A, Gálfi M, Soós K, Papp R, Zádori D, Penke B (2003) Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res Bull 62(3):223–229. https://doi.org/10.1016/j.brainresbull.2003.09.011
Article CAS PubMed Google Scholar
Decressac M, Volakakis N, Björklund A, Perlmann T (2013) NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol 9(11):629–636. https://doi.org/10.1038/nrneurol.2013.209
Article CAS PubMed Google Scholar
Folger A, Wang Y (2021) The cytotoxicity and clearance of mutant Huntingtin and other misfolded proteins. Cells 10(11):2835. https://doi.org/10.3390/cells10112835
Article CAS PubMed PubMed Central Google Scholar
Galamba N (2022) Aggregation of a Parkinson’s Disease-Related peptide: when does Urea weaken hydrophobic interactions?? ACS Chem Neurosci 13(12):1769–1781. https://doi.org/10.1021/acschemneuro.2c00169
Article CAS PubMed Google Scholar
Galvagnion C (2017) The role of lipids interacting with α-Synuclein in the pathogenesis of Parkinson’s disease. J Parkinson’s Disease 7(3):433–450. https://doi.org/10.3233/JPD-171103
Gorenberg EL, Chandra SS (2017) The role of co-chaperones in synaptic proteostasis and neurodegenerative disease. Front NeuroSci 11. https://doi.org/10.3389/fnins.2017.00248
Guo L, Xiong H, Kim JI, Wu YW, Lalchandani RR, Cui Y, Shu Y, Xu T, Ding JB (2015) Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson’s disease. Nat Neurosci 18(9):1299–1309. https://doi.org/10.1038/NN.4082
Article CAS PubMed PubMed Central Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In Silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Article CAS PubMed PubMed Central Google Scholar
Honorato RV, Trellet ME, Jiménez-García B, Schaarschmidt JJ, Giulini M, Reys V, Koukos PI, Rodrigues JPGLM, Karaca E, van Zundert GCP, Roel-Touris J, van Noort CW, Jandová Z, Melquiond ASJ, Bonvin AMJJ (2024) The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc 19(11):3219–3241. https://doi.org/10.1038/s41596-024-01011-0
Article CAS PubMed Google Scholar
Horsley JR, Jovcevski B, Wegener KL, Yu J, Pukala TL, Abell AD (2020) Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy for Alzheimer’s disease. Biochem J 477(11):2039–2054. https://doi.org/10.1042/BCJ20200290
Article CAS PubMed Google Scholar
Hostiuc S, Drima E, Buda O (2016) Shake the disease. Georges Marinesco, Paul Blocq and the pathogenesis of parkinsonism, 1893. Front Neuroanat 10(JUNE). https://doi.org/10.3389/FNANA.2016.00074
Hu S, Tan J, Qin L, Lv L, Yan W, Zhang H, Tang B, Wang C (2021) Molecular chaperones and Parkinson’s disease. Neurobiol Dis 160:105527. https://doi.org/10.1016/j.nbd.2021.105527
Article CAS PubMed Google Scholar
Hu J, Song S, Yu M, Yu Y, Ju Z, Wang Y, Cao X (2024) Molecular dynamics simulation of the effect of temperature on the conformation of ubiquitin protein. J Mol Model 30(5):134. https://doi.org/10.1007/s00894-024-05928-x
Article CAS PubMed Google Scholar
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
Article CAS PubMed Google Scholar
Jasutkar G, Hilary et al (2022) Therapeutics in the pipeline targeting α-Synuclein for Parkinson’s. Disease Pharmacol Reviews 74(1):207–237. https://doi.org/10.1124/pharmrev.120.000133
Kanchi PK, Dasmahapatra AK (2019) Polyproline chains destabilize the Alzheimer’s amyloid-β protofibrils: A molecular dynamics simulation study. J Mol Graph Model 93:107456. https://doi.org/10.1016/j.jmgm.2019.107456
Comments (0)