Aguilar-Toala JE, Quintanar-Guerrero D, Liceaga AM, Zambrano- Zaragoza ML (2022) Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Adv 12(11):6449. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8982217/
Asano N, Asahina S, Lu J, Xu J, Shen Y, Qin Z, et al (2022) Advanced scanning electron microscopy techniques for structural characterization of zeolites. Inorg Chem Front. 9(16):4225–4231. https://pubs.rsc.org/en/content/articlehtml/2022/qi/d2qi00952h
Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10(11):787–96. https://www.nature.com/articles/nri2868
Ball K, Bruin G, Escandón E, Funk C, Pereira JNS, Yang TY et al (2022) Characterizing the pharmacokinetics and biodistribution of therapeutic proteins: an industry white paper. Drug Metab Dispos 50(6):858–856
Article CAS PubMed Google Scholar
Barman P, Sharma C, Joshi S, Sharma S, Maan M, Rishi P et al (2023) In vivo acute toxicity and therapeutic potential of a synthetic peptide, DP1 in a staphylococcus aureus infected murine wound excision model. Probio Antimicrob Proteins. https://doi.org/10.1007/s12602-023-10176-1
Chaudhari K, Wang J, Xu Y, Winters A, Wang L, Dong X, et al (2020) Determination of metformin bio-distribution by LC-MS/MS in mice treated with a clinically relevant paradigm. PLoS ONE. 15(6):e0234571. https://pmc.ncbi.nlm.nih.gov/articles/PMC7289415/
Chereddy KK, Her CH, Comune M, Moia C, Lopes A, Porporato PE, et al (2014) PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 194:138–47. https://pubmed.ncbi.nlm.nih.gov/25173841/
Derman S, Mustafaeva ZA, Abamor ES, Bagirova M, Allahverdiyev A (2015) Preparation, characterization and immunological evaluation: Canine parvovirus synthetic peptide loaded plga nanoparticles. J Biomed Sci 22(1):1–12. https://doi.org/10.1186/s12929-015-0195-2
Fetse J, Kandel S, Mamani UF, Cheng K 2023 Recent advances in the development of therapeutic peptides. Trends Pharmacol Sci. 44(7):425–41. https://pubmed.ncbi.nlm.nih.gov/37246037/
Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, et al (2022) Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun. 13(1):1–9. https://www.nature.com/articles/s41467-022-30813-7
Gordillo-Galeano A, Mora-Huertas CE (2021) Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: emphasizing some parameters for correct measurements. Colloids Surf A Physicochem Eng Asp 5(620):126610
Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 11(6):673. https://pmc.ncbi.nlm.nih.gov/articles/PMC5561790/
Jarzębski M, Siejak P, Sawerski A, Stasiak M, Ratajczak K, Masewicz Ł et al (2020) Nanoparticles size determination by dynamic light scattering in real (Non-standard) conditions regulators - design, tests and applications. Pract Asp Chem Eng Sel Contrib PAIC. https://doi.org/10.1007/978-3-030-39867-5_13
Joshi S, Chadha J, Harjai K, Verma G, Saini A (2024) Synthetic peptide (DP1) functionalized graphene oxide: a biocompatible nanoformulation with broad-spectrum antibacterial and antibiofilm activity. FlatChem 1(44):100626
Lamers C (2022) Overcoming the shortcomings of peptide-based therapeutics. Futur Drug Discov 4(2):75. https://doi.org/10.4155/fdd-2022-0005
Liu JJ (2021) Advances and applications of atomic-resolution scanning transmission electron microscopy. Microsc Microanal. 27(5):943–995. https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/advances-and-applications-of-atomicresolution-scanning-transmission-electron-microscopy/4C921CF300CE68DA2B244AB53A29C30A
Maan M, Goyal H, Joshi S, Barman P, Sharma S, Kumar R et al (2024) DP1, a multifaceted synthetic peptide: Mechanism of action, activity and clinical potential. Life Sci 1(340):122458
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V (2023) Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech. 24(1). https://pubmed.ncbi.nlm.nih.gov/36653547/
Markwalter CE, Pagels RF, Hejazi AN, Ristroph KD, Wang J, Chen K et al (2021) Sustained release of peptides and proteins from polymeric nanocarriers produced by inverse Flash NanoPrecipitation. J Control Release 10(334):11–20
Misra SK, Pathak K (2023) Nose-to-Brain Targeting via Nanoemulsion: Significance and Evidence. Colloids and Interfaces. Multidisciplinary Digital Publishing Institute. 23. https://www.mdpi.com/2504-5377/7/1/23/htm
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 195 [Internet]. 2020 Feb 27 [cited 2024 Oct 26];19(5):311–32. https://www.nature.com/articles/s41573-019-0058-8
Nuzaiba PM, Gupta S, Gupta S, Jadhao SB (2023) Synthesis of L-methionine-loaded chitosan nanoparticles for controlled release and their in vitro and in vivo evaluation. Sci Rep. 13(1). https://pubmed.ncbi.nlm.nih.gov/37164991/
Roberts R, Smyth JW, Will J, Roberts P, Grek CL, Ghatnekar GS et al (2020) Development of PLGA nanoparticles for sustained release of a connexin43 mimetic peptide to target glioblastoma cells. Mater Sci Eng C 1(108):110191
Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al (2010) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 6(5):662–71. https://pubmed.ncbi.nlm.nih.gov/20230912/
Sharma S, Parmar A, Bhardwaj R, Bijarnia RK, Kaur T (2018) Design and characterization of apocynin loaded plga nanoparticles and their in vivo efficacy in hyperoxaluric rats. Curr Drug Deliv. 15(7):1020–1027. https://pubmed.ncbi.nlm.nih.gov/29493454/
Sharma P, Sharma S, Joshi S, Barman P, Bhatt A, Maan M, et al (2022) Design, characterization and structure–function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment. Sci Reports 2022 121 [Internet]. Jul 14 [cited 2023 Nov 3]; 12(1):1–14. Available from: https://www.nature.com/articles/s41598-022-16303-2
Silva AL, Rosalia RA, Sazak A, Carstens MG, Ossendorp F, Oostendorp J et al (2013) Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8+ T cell activation. Eur J Pharm Biopharm 83(3):338–345
Article CAS PubMed Google Scholar
Skotland T, Iversen TG, Llorente A, Sandvig K (2022) Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: possibilities and challenges. Adv Drug Deliv Rev 1(186):114326
Thimmiah BR, Chien BTC, Fui KS, Yon LS, Nallathambi G, Jeevanandam J, et al (2022) Nanoformulation of Peptides for Pharmaceutical Applications: In Vitro and In Vivo Perspectives. Appl Sci 12(24):12777. Available from: https://www.mdpi.com/2076-3417/12/24/12777/htm
Vyas AKJ, Mishra SB, Patel AB, Patel NK, Shah SR, Sheth DB (2022) A brief review on liquid chromatography- mass spectrometry/LCMS and its application. Asian J Pharm Anal. 12(3):203–210. https://ajpaonline.com/AbstractView.aspx?PID=2022-12-3-8
Wang Y, Qu W, Choi SH (2017) FDA’s regulatory science program for generic PLA/PLGA-based drug products. Am Pharm Rev 20(4):e0234571
Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al (2022) Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 7(1):1–27. https://www.nature.com/articles/s41392-022-00904-4
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, et al (2024) Recent applications of PLGA in drug delivery systems. Polymers 16(18):2606. https://www.mdpi.com/2073-4360/16/18/2606/htm
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S (2022) Potentials of neuropeptides as therapeutic agents for neurological diseases. Biomedicines. 10(2). https://pubmed.ncbi.nlm.nih.gov/35203552/
Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 27(21):4025–4033. https://pubmed.ncbi.nlm.nih.gov/16564085/
Comments (0)