Transepithelial Transport of Hemp Protein-Derived Bioactive Peptide Trp–Tyr–Thr (WYT) in Human Caco-2 Cell Monolayers

Bejjani S, Wu J (2013) Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells. J Agric Food Chem 61:1487–1492. https://doi.org/10.1021/jf302904t

Article  CAS  PubMed  Google Scholar 

Chua HL, Jois S, Sim MK, Go ML (2004) Transport of angiotensin peptides across the Caco-2 monolayer. Peptides 25:1327–1338. https://doi.org/10.1016/j.peptides.2004.06.009

Article  CAS  PubMed  Google Scholar 

Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384. https://doi.org/10.1146/annurev.physiol.66.032102.144149

Article  CAS  PubMed  Google Scholar 

Ding L, Zhang Y, Jiang Y, Wang L, Liu B, Liu J (2014) Transport of egg white ACE-inhibitory peptide Gln-Ile-Gly-Leu-Phe in human intestinal Caco-2 cell monolayers with cytoprotective effect. J Agric Food Chem 62:3177–3182. https://doi.org/10.1021/jf405639w

Article  CAS  PubMed  Google Scholar 

Ding L, Wang L, Zhang Y, Liu J (2015) Transport of antihypertensive peptide RVPSL, ovotransferrin 328–332, in human intestinal Caco-2 cell monolayers. J Agric Food Chem 63:8143–8150. https://doi.org/10.1021/acs.jafc.5b01824

Article  CAS  PubMed  Google Scholar 

Ding L, Wang L, Yu Z, Ma S, Du Z, Zhang T, Liu J (2017) Importance of terminal amino acid residues to the transport of oligopeptides across the Caco-2 cell monolayer. J Agric Food Chem 65:7705–7712. https://doi.org/10.1021/acs.jafc.7b03450

Article  CAS  PubMed  Google Scholar 

Fan H, Xu Q, Hong H, Wu J (2018) Stability and transport of spent hen-derived ACE-inhibitory peptides IWHHT, IWH, and IW in human intestinal Caco-2 cell monolayers. J Agric Food Chem 66:11347–11354. https://doi.org/10.1021/acs.jafc.8b03956

Article  CAS  PubMed  Google Scholar 

Fernández-Musoles R, Salom JB, Castelló-Ruiz M, del Mar Contreras M, Recio I, Manzanares P (2013) Bioavailability of antihypertensive lactoferricin B-derived peptides: transepithelial transport and resistance to intestinal and plasma peptidases. Int Dairy J 32:169174. https://doi.org/10.1016/j.idairyj.2013.05.009

Article  CAS  Google Scholar 

Gao J, Guo Y, Pan D (2017) Intestinal absorption of milk-derived ACE inhibitory peptides LL and LPEW using Caco-2 cell model. Food Sci 38:214–219. https://doi.org/10.7506/spkx1002-6630-201711034(in Chinese)

Article  Google Scholar 

Geissler S, Zwarg M, Knütter I, Markwardt F, Brandsch M (2010) The bioactive dipeptide Anserine is transported by human proton-coupled peptide transporters. FEBS J 277:790–795. https://doi.org/10.1111/j.1742-4658.2009.07528.x

Article  CAS  PubMed  Google Scholar 

Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE (2011) Kinetics of enzyme Inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J Am Oil Chem Soc 88:1767–1774. https://doi.org/10.1007/s11746-011-1841-9

Article  CAS  Google Scholar 

Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE (2014) Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods 6:384–394. https://doi.org/10.1016/j.jff.2013.11.005

Article  CAS  Google Scholar 

Guo Y, Gan J, Zhu Q, Zeng X, Sun Y, Wu Z, Pan D (2018) Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.j. Sci Food Agric 98:976–983. https://doi.org/10.1002/jsfa.8545

Article  CAS  Google Scholar 

Hamzeh A, Sangsawad P, Noisa P, Choowongkomon K, Yongsawatdigul J (2022) Bioactivities of in vitro transepithelial transported peptides from cooked chicken breast. Int J Pept Res Ther 28:1–10. https://doi.org/10.1007/s10989-021-10326-5

Article  CAS  Google Scholar 

He YY, Li TT, Chen JX, She XX, Ren DF, Lu J (2018) Transport of ACE inhibitory peptides Ile-Gln-Pro and Val-Glu-Pro derived from Spirulina platensis across Caco-2 monolayers. J Food Sci 83:2586–2592. https://doi.org/10.1111/1750-3841.14350

Article  CAS  PubMed  Google Scholar 

Hubatsch I, Ragnarsson EGE, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111–2119. https://doi.org/10.1038/nprot.2007.303

Article  CAS  PubMed  Google Scholar 

Lei L, Sun HY, Liu D, Liu LG, Li SM (2008) Transport of Val-Leu-Pro-Val-Pro in human intestinal epithelial (Caco-2) cell monolayers. J Agric Food Chem 56:3582–3586. https://doi.org/10.1021/jf703640p

Article  CAS  PubMed  Google Scholar 

Lin Q, Xu Q, Bai J, Wu W, Hong H, Wu J (2017) Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. J Funct Foods 39:96–102. https://doi.org/10.1016/j.jff.2017.10.011

Article  CAS  Google Scholar 

Linnankoski J, Mäkelä J, Palmgren J, Mauriala T, Vedin C, Ungell AL, Lazorova L, Artursson P, Urtti A, Yliperttula M (2010) Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J Pharm Sci 99:2166–2175. https://doi.org/10.1002/jps.21961

Article  CAS  PubMed  Google Scholar 

Malomo SA, Onuh JO, Girgih AT, Aluko RE (2015) Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients 7:7616–7632. https://doi.org/10.3390/nu7095358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miguel M, Dávalos A, Manso MA, de la Peña G, Lasunción MA, Lopez-Fandino R (2008) Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Mol Nutr Food Res 52:1507–1513. https://doi.org/10.1002/mnfr.200700503

Article  CAS  PubMed  Google Scholar 

Ohsawa K, Satsu H, Ohki K, Enjoh M, Takano T, Shimizu M (2008) Producibility and digestibility of antihypertensive β-casein tripeptides Val-Pro-Pro and Ile-Pro-Pro in the Gastrointestinal tract: analyses using an in vitro model of mammalian Gastrointestinal digestion. J Agric Food Chem 56:854–858. https://doi.org/10.1021/jf072671n

Article  CAS  PubMed  Google Scholar 

Orio LP, Boschin G, Recca T, Morelli CF, Ragona L, Francescato P, Arnoldi A, Speranza G (2017) New ACE-inhibitory peptides from hemp seed (Cannabis sativa L.) proteins. J Agric Food Chem 65:10482–10488. https://doi.org/10.1021/acs.jafc.7b04522

Article  CAS  PubMed  Google Scholar 

Quirós A, Dávalos A, Lasunción MA, Ramos M, Recio I (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int Dairy J 18:279–286. https://doi.org/10.1016/j.idairyj.2007.09.006

Article  CAS  Google Scholar 

Regazzo D, Mollé D, Gabai G, Tomé D, Dupont D, Leonil J, Boutrou R (2010) The (193–209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Mol Nutr Food Res 54:1428–1435. https://doi.org/10.1002/mnfr.200900443

Article  CAS  PubMed  Google Scholar 

Satake M, Enjoh M, Nakamura Y, Takano T, Kawamura Y, Arai S, Shimizu M (2002) Transepithelial transport of the bioactive tripeptide Val-Pro-Pro in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 66:378–384. https://doi.org/10.1271/bbb.66.378

Article  CAS  PubMed  Google Scholar 

Sienkiewicz-Szlapka E, Jarmolowska B, Krawczuk S, Kostyra E, Kostyra H, Bielikowicz K (2009) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int Dairy J 19:252–257. https://doi.org/10.1016/j.idairyj.2008.10.007

Article  CAS  Google Scholar 

Sorokina L, Solberg NT, Koga S, Rønning SB, Afseth NK, Wilson SR, Rieder A, Wubshet SG (2024) In vitro Gastrointestinal stability and intestinal absorption of ACE-1 and DPP4 inhibitory peptides from poultry by-product hydrolysates. Food Funct 15:7364–7374. https://doi.org/10.1039/D4FO01214C

Article  PubMed  Google Scholar 

Sun HY, Liu D, Li SM, Qin ZY (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 73:293–298. https://doi.org/10.1111/j.1600-0609.1997.tb01692.x

Article 

Comments (0)

No login
gif