Bejjani S, Wu J (2013) Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells. J Agric Food Chem 61:1487–1492. https://doi.org/10.1021/jf302904t
Article CAS PubMed Google Scholar
Chua HL, Jois S, Sim MK, Go ML (2004) Transport of angiotensin peptides across the Caco-2 monolayer. Peptides 25:1327–1338. https://doi.org/10.1016/j.peptides.2004.06.009
Article CAS PubMed Google Scholar
Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384. https://doi.org/10.1146/annurev.physiol.66.032102.144149
Article CAS PubMed Google Scholar
Ding L, Zhang Y, Jiang Y, Wang L, Liu B, Liu J (2014) Transport of egg white ACE-inhibitory peptide Gln-Ile-Gly-Leu-Phe in human intestinal Caco-2 cell monolayers with cytoprotective effect. J Agric Food Chem 62:3177–3182. https://doi.org/10.1021/jf405639w
Article CAS PubMed Google Scholar
Ding L, Wang L, Zhang Y, Liu J (2015) Transport of antihypertensive peptide RVPSL, ovotransferrin 328–332, in human intestinal Caco-2 cell monolayers. J Agric Food Chem 63:8143–8150. https://doi.org/10.1021/acs.jafc.5b01824
Article CAS PubMed Google Scholar
Ding L, Wang L, Yu Z, Ma S, Du Z, Zhang T, Liu J (2017) Importance of terminal amino acid residues to the transport of oligopeptides across the Caco-2 cell monolayer. J Agric Food Chem 65:7705–7712. https://doi.org/10.1021/acs.jafc.7b03450
Article CAS PubMed Google Scholar
Fan H, Xu Q, Hong H, Wu J (2018) Stability and transport of spent hen-derived ACE-inhibitory peptides IWHHT, IWH, and IW in human intestinal Caco-2 cell monolayers. J Agric Food Chem 66:11347–11354. https://doi.org/10.1021/acs.jafc.8b03956
Article CAS PubMed Google Scholar
Fernández-Musoles R, Salom JB, Castelló-Ruiz M, del Mar Contreras M, Recio I, Manzanares P (2013) Bioavailability of antihypertensive lactoferricin B-derived peptides: transepithelial transport and resistance to intestinal and plasma peptidases. Int Dairy J 32:169174. https://doi.org/10.1016/j.idairyj.2013.05.009
Gao J, Guo Y, Pan D (2017) Intestinal absorption of milk-derived ACE inhibitory peptides LL and LPEW using Caco-2 cell model. Food Sci 38:214–219. https://doi.org/10.7506/spkx1002-6630-201711034(in Chinese)
Geissler S, Zwarg M, Knütter I, Markwardt F, Brandsch M (2010) The bioactive dipeptide Anserine is transported by human proton-coupled peptide transporters. FEBS J 277:790–795. https://doi.org/10.1111/j.1742-4658.2009.07528.x
Article CAS PubMed Google Scholar
Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE (2011) Kinetics of enzyme Inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J Am Oil Chem Soc 88:1767–1774. https://doi.org/10.1007/s11746-011-1841-9
Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE (2014) Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods 6:384–394. https://doi.org/10.1016/j.jff.2013.11.005
Guo Y, Gan J, Zhu Q, Zeng X, Sun Y, Wu Z, Pan D (2018) Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.j. Sci Food Agric 98:976–983. https://doi.org/10.1002/jsfa.8545
Hamzeh A, Sangsawad P, Noisa P, Choowongkomon K, Yongsawatdigul J (2022) Bioactivities of in vitro transepithelial transported peptides from cooked chicken breast. Int J Pept Res Ther 28:1–10. https://doi.org/10.1007/s10989-021-10326-5
He YY, Li TT, Chen JX, She XX, Ren DF, Lu J (2018) Transport of ACE inhibitory peptides Ile-Gln-Pro and Val-Glu-Pro derived from Spirulina platensis across Caco-2 monolayers. J Food Sci 83:2586–2592. https://doi.org/10.1111/1750-3841.14350
Article CAS PubMed Google Scholar
Hubatsch I, Ragnarsson EGE, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111–2119. https://doi.org/10.1038/nprot.2007.303
Article CAS PubMed Google Scholar
Lei L, Sun HY, Liu D, Liu LG, Li SM (2008) Transport of Val-Leu-Pro-Val-Pro in human intestinal epithelial (Caco-2) cell monolayers. J Agric Food Chem 56:3582–3586. https://doi.org/10.1021/jf703640p
Article CAS PubMed Google Scholar
Lin Q, Xu Q, Bai J, Wu W, Hong H, Wu J (2017) Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. J Funct Foods 39:96–102. https://doi.org/10.1016/j.jff.2017.10.011
Linnankoski J, Mäkelä J, Palmgren J, Mauriala T, Vedin C, Ungell AL, Lazorova L, Artursson P, Urtti A, Yliperttula M (2010) Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J Pharm Sci 99:2166–2175. https://doi.org/10.1002/jps.21961
Article CAS PubMed Google Scholar
Malomo SA, Onuh JO, Girgih AT, Aluko RE (2015) Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients 7:7616–7632. https://doi.org/10.3390/nu7095358
Article CAS PubMed PubMed Central Google Scholar
Miguel M, Dávalos A, Manso MA, de la Peña G, Lasunción MA, Lopez-Fandino R (2008) Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Mol Nutr Food Res 52:1507–1513. https://doi.org/10.1002/mnfr.200700503
Article CAS PubMed Google Scholar
Ohsawa K, Satsu H, Ohki K, Enjoh M, Takano T, Shimizu M (2008) Producibility and digestibility of antihypertensive β-casein tripeptides Val-Pro-Pro and Ile-Pro-Pro in the Gastrointestinal tract: analyses using an in vitro model of mammalian Gastrointestinal digestion. J Agric Food Chem 56:854–858. https://doi.org/10.1021/jf072671n
Article CAS PubMed Google Scholar
Orio LP, Boschin G, Recca T, Morelli CF, Ragona L, Francescato P, Arnoldi A, Speranza G (2017) New ACE-inhibitory peptides from hemp seed (Cannabis sativa L.) proteins. J Agric Food Chem 65:10482–10488. https://doi.org/10.1021/acs.jafc.7b04522
Article CAS PubMed Google Scholar
Quirós A, Dávalos A, Lasunción MA, Ramos M, Recio I (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int Dairy J 18:279–286. https://doi.org/10.1016/j.idairyj.2007.09.006
Regazzo D, Mollé D, Gabai G, Tomé D, Dupont D, Leonil J, Boutrou R (2010) The (193–209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Mol Nutr Food Res 54:1428–1435. https://doi.org/10.1002/mnfr.200900443
Article CAS PubMed Google Scholar
Satake M, Enjoh M, Nakamura Y, Takano T, Kawamura Y, Arai S, Shimizu M (2002) Transepithelial transport of the bioactive tripeptide Val-Pro-Pro in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 66:378–384. https://doi.org/10.1271/bbb.66.378
Article CAS PubMed Google Scholar
Sienkiewicz-Szlapka E, Jarmolowska B, Krawczuk S, Kostyra E, Kostyra H, Bielikowicz K (2009) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int Dairy J 19:252–257. https://doi.org/10.1016/j.idairyj.2008.10.007
Sorokina L, Solberg NT, Koga S, Rønning SB, Afseth NK, Wilson SR, Rieder A, Wubshet SG (2024) In vitro Gastrointestinal stability and intestinal absorption of ACE-1 and DPP4 inhibitory peptides from poultry by-product hydrolysates. Food Funct 15:7364–7374. https://doi.org/10.1039/D4FO01214C
Sun HY, Liu D, Li SM, Qin ZY (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 73:293–298. https://doi.org/10.1111/j.1600-0609.1997.tb01692.x
Comments (0)