Ahring KK, Lund AM, Jensen E et al (2018) Comparison of glycomacropeptide with phenylalanine Free-Synthetic amino acids in test meals to PKU patients: no significant differences in biomarkers, including plasma phe levels. J Nutr Metabolism 2018:1–11. https://doi.org/10.1155/2018/6352919
Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. https://doi.org/10.3389/fimmu.2014.00491. Front Immunol 5:
Arunkumar A, Etzel MR (2018) Fractionation of glycomacropeptide from Whey using positively charged ultrafiltration membranes. Foods 7:166. https://doi.org/10.3390/foods7100166
Article PubMed PubMed Central CAS Google Scholar
Asenjo JA, Andrews BA (2011) Aqueous two-phase systems for protein separation: A perspective. J Chromatogr A 1218:8826–8835. https://doi.org/10.1016/j.chroma.2011.06.051
Article PubMed CAS Google Scholar
Bremer MGEG, Kemmers-Voncken AEM, Boers EAM et al (2008) Enzyme-linked immunosorbent assay for the detection of bovine Rennet Whey powder in milk powder and buttermilk powder. Int Dairy J 18:294–302. https://doi.org/10.1016/j.idairyj.2007.08.008
Burns P, Binetti A, Torti P et al (2015) Administration of caseinomacropeptide-enriched extract to mice enhances the calcium content of femur in a low-calcium diet. Int Dairy J 44:15–20. https://doi.org/10.1016/j.idairyj.2014.12.005
Castro-Muñoz R, Conidi C, Cassano A (2019) Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit Rev Food Sci Nutr 59:2927–2948. https://doi.org/10.1080/10408398.2018.1478796
Article PubMed CAS Google Scholar
Chávez NA, Salinas E, Jauregui J et al (2008) Detection of bovine milk adulterated with cheese Whey by Western blot immunoassay. Food Agricultural Immunol 19:265–272. https://doi.org/10.1080/09540100802381042
Chávez NA, Jauregui J, Palomares LA et al (2012) A highly sensitive sandwich ELISA for the determination of glycomacropeptide to detect liquid Whey in Raw milk. Dairy Sci Technol 92:121–132. https://doi.org/10.1007/s13594-011-0052-3
Article PubMed PubMed Central CAS Google Scholar
Cheeseman J, Kuhnle G, Spencer DIR, Osborn HMI (2021) Assays for the identification and quantification of Sialic acids: challenges, opportunities and future perspectives. Bioorg Med Chem 30:115882. https://doi.org/10.1016/j.bmc.2020.115882
Article PubMed CAS Google Scholar
Chen Q, Liang Y, Zhu C et al (2013) Effects of casein glycomacropeptide on the early development of primary colorectal cancer in rats. Food Sci Hum Wellness 2:113–118. https://doi.org/10.1016/j.fshw.2013.09.001
Chen GQ, Qu Y, Gras SL, Kentish SE (2023) Separation technologies for Whey protein fractionation. Food Eng Rev 15:438–465. https://doi.org/10.1007/s12393-022-09330-2
Córdova-Dávalos LE, Jiménez M, Salinas E (2019) Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways. Nutrients 11:598. https://doi.org/10.3390/nu11030598
Article PubMed PubMed Central CAS Google Scholar
Córdova-Dávalos LE, Cervantes-García D, Ballona-Alba MF et al (2023) Protective effect of glycomacropeptide on the inflammatory response of U937 macrophages. Foods 12:1528. https://doi.org/10.3390/foods12071528
Article PubMed PubMed Central CAS Google Scholar
Cummins PM, Rochfort KD, O’Connor BF (2017) Ion-Exchange chromatography: basic principles and application. In: Walls D, Loughran ST (eds) Protein chromatography. Springer New York, New York, NY, pp 209–223
Daly A, Evans S, Chahal S et al (2019) Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 14:44. https://doi.org/10.1186/s13023-019-1011-y
Article PubMed PubMed Central CAS Google Scholar
Daly A, Ilgaz F, Pinto A, MacDonald A (2023) Casein glycomacropeptide in phenylketonuria: does it bring clinical benefit? Curr Opin Clin Nutr Metabolic Care. https://doi.org/10.1097/MCO.0000000000001000
Darvishi P, Mirzaee-Ghaleh E, Ramedani Z et al (2024) Detecting Whey adulteration of powdered milk by analysis of volatile emissions using a MOS electronic nose. Int Dairy J 157:106012. https://doi.org/10.1016/j.idairyj.2024.106012
De Carvalho BMA, De Carvalho LM, Dos Reis Coimbra JS et al (2015) Rapid detection of Whey in milk powder samples by spectrophotometric and multivariate calibration. Food Chem 174:1–7. https://doi.org/10.1016/j.foodchem.2014.11.003
Article PubMed CAS Google Scholar
De Hart NMmp, Petrocelli JJ, Nicholson RJ et al (2023) Palmitate-Induced inflammation and myotube atrophy in C2C12 cells are prevented by the Whey bioactive peptide, glycomacropeptide. J Nutr 153:2915–2928. https://doi.org/10.1016/j.tjnut.2023.08.033
de Oliveira Mendes T, Porto BLS, Bell MJV et al (2016) Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by Whey addition. Food Chem 213:647–653. https://doi.org/10.1016/j.foodchem.2016.07.035
Article PubMed CAS Google Scholar
De Pádua Alves É, De Alcântara ALD, Guimarães AJK et al (2018) Milk adulteration with acidified Rennet Whey: a limitation for caseinomacropeptide detection by high-performance liquid chromatography. J Sci Food Agric 98:3994–3996. https://doi.org/10.1002/jsfa.8846
Article PubMed CAS Google Scholar
Ebrahimi A, Moosavy M, Khatibi SA et al (2021) A comparative study of the antibacterial properties of milk from different domestic animals. Int J Dairy Tech 74:425–430. https://doi.org/10.1111/1471-0307.12757
Ebrahimi A, Andishmand H, Huo C et al (2024) Glycomacropeptide: A comprehensive Understanding of its major biological characteristics and purification methodologies. Comp Rev Food Sci Food Safe 23:e13370. https://doi.org/10.1111/1541-4337.13370
El-Aidie SAM, Khalifa GSA (2024) Innovative applications of Whey protein for sustainable dairy industry: environmental and technological perspectives—A comprehensive review. Comp Rev Food Sci Food Safe 23:e13319. https://doi.org/10.1111/1541-4337.13319
Elgamily H, Safwat E, Soliman Z et al (2019) Antibacterial and remineralization efficacy of casein phosphopeptide, glycomacropeptide nanocomplex, and probiotics in experimental toothpastes: an in vitro comparative study. Eur J Dent 13:391–398. https://doi.org/10.1055/s-0039-1693748
Article PubMed PubMed Central Google Scholar
Feeney S, Joshi L, Hickey RM (2018) Biological roles and production technologies associated with bovine glycomacropeptide. In: Hayes M (ed) Novel proteins for food, pharmaceuticals and agriculture, 1st edn. Wiley, pp 1–28
Fekete S, Beck A, Veuthey J-L, Guillarme D (2015) Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal 113:43–55. https://doi.org/10.1016/j.jpba.2015.02.037
Article PubMed CAS Google Scholar
Fernando SF, Woonton BW (2010) Quantitation of N-acetylneuraminic (sialic) acid in bovine glycomacropeptide (GMP). J Food Compos Anal 23:359–366. https://doi.org/10.1016/j.jfca.2009.12.004
Foisy Sauvé M, Spahis S, Delvin E, Levy E (2021) Glycomacropeptide: A bioactive milk derivative to alleviate metabolic syndrome outcomes. Antioxid Redox Signal 34:201–222. https://doi.org/10.1089/ars.2019.7994
Article PubMed CAS Google Scholar
Fukuda S, Roig S, Prata L (2004) Correlation between acidic ninhydrin and HPLC methods to evaluate fraudulent addition of Whey in milk. https://doi.org/10.1051/lait:2004018. http://dx.doi.org/101051/lait:2004018 84:
Galindo-Amaya L, Valbuena E, Rojas-Villarroel E (2006) Standardization of glycomacropeptide detection with SDS-PAGE as a milk adulteration index. Revista Cient De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia 16:308–314
Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454. https://doi.org/10.1038/nature07204
Comments (0)