Apolloni LB, Bruno JB, Alves BG et al (2016) The role of androgens in mammals folliculogenesis. Acta Sci Vet 44(1):15
Arnal JF, Lenfant F, Metivier R et al (2017) Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev 97(3):1045–1087. https://doi.org/10.1152/physrev.00024.2016
Astapova O, Minor BMN, Hammes SR (2019) Physiological and pathological androgen actions in the ovary. Endocrinology 160(5):1166–1174. https://doi.org/10.1210/en.2019-00101
Article CAS PubMed PubMed Central Google Scholar
Bancroft J, Cawood EH (1996) Androgens and the menopause; a study of 40–60-year-old women. Clin Endocrinol (Oxf) 45(5):577–587. https://doi.org/10.1046/j.1365-2265.1996.00846.x
Article CAS PubMed Google Scholar
Baptista A, Gonçalves RV, Bressan J et al (2018) Crude extracts and fractions of cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and pequi (Caryocar brasiliense C.): a systematic review. Hindawi Oxidative Med Cell Longevity. https://doi.org/10.1155/2018/3753562
Barnett KR, Schilling C, Greenfeld CR et al (2006) Ovarian follicle development and transgenic mouse models. Hum Reprod Update 12(5):537–555. https://doi.org/10.1093/humupd/dml022
Article CAS PubMed Google Scholar
Braga KMS, Araujo EG, Sellke FW (2022) Pequi fruit extract increases antioxidant enzymes and reduces oxidantes in human coronary arterial endothelial cells. Antioxidants 11(3):474. https://doi.org/10.3390/antiox11030474
Article CAS PubMed PubMed Central Google Scholar
Brito RM, Barcia MT, Farias CAA et al (2022) Bioactive compounds of pequi pulp and oil extracts modulate antioxidant activity and antiproliferative activity in cocultured blood mononuclear cells and breast cancer cells. Food Nutr Res 27:66. https://doi.org/10.29219/fnr.v66.8282
Carneiro CR, Alhaji AM, da Silva CAS et al (2023) Potential challenges of the extraction of carotenoids and fatty acids from pequi (Caryocar brasiliense) oil. Foods 12(9):1907. https://doi.org/10.3390/foods12091907
Article CAS PubMed PubMed Central Google Scholar
Carvalho-Silva PM, Zuffo JA, Mendes MEHS et al (2024) Histological investigation in aging male and female gerbil prostates after prenatal exposure to pequi (Caryocar brasiliense Cambess) oil and 17α-ethinylestradiol. Int J Environ Health Res 34(9):3073–3083. https://doi.org/10.1080/09603123.2023.2294067
Colombo NBR, Rangel MP, Martins V et al (2015) Caryocar Brasiliense Camb. protects against genomic and oxidative damage in urethane-induced lung carcinogenesis. Braz J Med Biol Res 48:852–862. https://doi.org/10.1590/1414-431X20154467
Article CAS PubMed PubMed Central Google Scholar
Couse JF, Yates MM, Rodriguez KF et al (2006) The intraovarian actions of estrogen receptor-alpha are necessary to repress the formation of morphological and functional Leydig-like cells in the female gonad. Endocrinology 147(8):3666–3678. https://doi.org/10.1210/en.2006-0276
Article CAS PubMed Google Scholar
Da Silva DC, Da Silva JFG, Monteiro JA et al (2024) Effects of prenatal exposure to pequi oil and 17α-ethinylestradiol on folliculogenesis in gerbil (Meriones unguiculatus) ovaries. Emerg Anim Spec. https://doi.org/10.1016/j.eas.2024.100049
Díaz-Hernández V, Caldelas I, Montaño LM et al (2019) Morphological rearrangement of the cortical region, in aging ovaries. Histol Histopathol 34(7):775–789. https://doi.org/10.14670/HH-18-078
Dos Santos CR, Arcanjo GS, de Souza Santos LV et al (2021) Aquatic concentration and risk assessment of pharmaceutically active compounds in the environment. Environ Pollut 290:118049. https://doi.org/10.1016/j.envpol.2021.118049
Article CAS PubMed Google Scholar
Emmen JM, Couse JF, Elmore SA (2005) In vitro growth and ovulation of follicles from ovaries of estrogen receptor (ER) and ER null mice indicate a role for ER in follicular maturation. Endocrinology 146(6):2817–2826. https://doi.org/10.1210/en.2004-1108
Article CAS PubMed Google Scholar
Feeley KM, Wells M (2001) Precursor lesions of ovarian epithelial malignancy. Histopathology 38(2):87–95. https://doi.org/10.1046/j.1365-2559.2001.01042.x
Article CAS PubMed Google Scholar
Ferré-Pujol P, Otsuki J, Funahashi H, Nakatsuka M (2021) The thickness and density of the ovarian tunica albuginea increases with age in transgender patients. Reprod Sci 28(5):1339–1346. https://doi.org/10.1007/s43032-020-00390-5
Article CAS PubMed Google Scholar
Fleury FG, Guimarães LRF, Rezende EB et al (2021) Prenatal and pubertal exposure to 17α-ethinylestradiol cause morphological changes in the prostate of old gerbils. Cell Biol Int 45(10):2074–2085. https://doi.org/10.1002/cbin.11656
Article CAS PubMed Google Scholar
Guzmán-Silva MA, Costa-Neves M (2006) Incipient spontaneous granulosa cell tumour in the gerbil. Meriones Unguiculatus Lab Anim 40(1):96–101. https://doi.org/10.1258/002367706775404435
Jia M, Dahlman-Wright K, Gustafsson J (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Haematol 29(4):557–568. https://doi.org/10.1016/j.beem.2015.04.008
Kimura S, Matsumoto T, Matsuyama R et al (2007) Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metab 18(5):183–189. https://doi.org/10.1016/j.tem.2007.04.002
Article CAS PubMed Google Scholar
Kinnear HM, Tomaszewski CE, Chang AL et al (2020) The ovarian stroma as a new frontier. Reproduction 160(3):25–39. https://doi.org/10.1530/REP-19-0501
Leonel ECR, Campos SGP, Bedolo CM et al. (2021). The Mongolian gerbil (Meriones unguiculatus): reproductive organs. In Starck JM (ed), Microscopic Anatomy of the Animals. 1ed.Hoboken, NJ, EUA: Wiley Online Library. https://doi.org/10.1002/9781118158036.maa20180150
Li L, Shi X, Shi Y et al (2021) The signaling pathways involved in ovarian follicle development. Front Physiol 12:730196. https://doi.org/10.3389/fphys.2021.730196
Article PubMed PubMed Central Google Scholar
Martorell J (2017) Reproductive disorders in pet rodents. Vet Clin North Am Exot Anim Pract 20(2):589–608. https://doi.org/10.1016/j.cvex.2016.11.015
Miranda-Vilela AL, Grisolia CK, Longo JPF et al (2014) Oil rich in carotenoids instead of vitamins c and e as a better option to reduce doxorubicininduced damage to normal cells of ehrlich tumor-bearing mice: hematological, toxicological and histopathological evaluations. J Nutr Biochem 25:1161–1176. https://doi.org/10.1016/j.jnutbio.2014.06.005
Article CAS PubMed Google Scholar
Nascimento-Silva NRRD, Naves MMV (2019) Potential of whole pequi (Caryocar spp.) fruit-pulp, almond, oil, and shell-as a medicinal food. J Med Food 22(9):952–962. https://doi.org/10.1089/jmf.2018.0149
Article CAS PubMed Google Scholar
Nishino N, Totsukawa K (1996) Study on the estrous cycle in the Mongolian gerbil (Meriones unguiculatus). Exp Anim 45:283–288. https://doi.org/10.1538/expanim.45.283
Article CAS PubMed Google Scholar
Ombredane AS, Silva LRA, Araujo VHS (2022) Pequi oil (Caryocar brasilense Cambess) nanoemulsion alters cell proliferation and demages key organelles in triple-negative breast cancer cells in vitro. Biomed Pharmacother 153:113348. https://doi.org/10.1016/j.biopha.2022.113348
Article CAS PubMed Google Scholar
Pepene CE (2012) Soluble platelet/endothelial cell adhesion molecule (sPECAM)-1 is increased in polycystic ovary syndrome and related to endothelial dysfunction. Gynecol Endocrinol 28(5):370–374. https://doi.org/10.3109/09513590.2011.632792
Comments (0)