Tissue-specific localization of the ING4 targeting subunit of the HBO1 histone acetyltransferase in the cytoplasm and nucleus of secretory cells

Archambeau J, Blondel A, Pedeux R (2019) Focus-ING on DNA integrity: implication of ING proteins in cell cycle regulation and DNA repair modulation. Cancers (Basel) 12(1):58. https://doi.org/10.3390/cancers12010058

Article  CAS  PubMed  Google Scholar 

Boland D, Olineck V, Bonnefin P, Vieyra D, Parr E, Riabowol K (2000) A panel of CAb antibodies recognize endogenous and ectopically expressed ING1 protein. Hybridoma 19(2):161–165. https://doi.org/10.1089/02724570050031202

Article  CAS  PubMed  Google Scholar 

Bose P, Thakur S, Thalappilly S, Ahn BY, Satpathy S, Feng X, Suzuki K, Kim SW, Riabowol K (2013) ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis 4(9):e788. https://doi.org/10.1038/cddis.2013.321

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradbury ARM, Trinklein ND, Thie H, Wilkinson IC, Tandon AK, Anderson S, Bladen CL, Jones B, Aldred SF, Bestagno M, Burrone O, Maynard J, Ferrara F, Trimmer JS, Görnemann J, Glanville J, Wolf P, Frenzel A, Wong J, Koh XY, Eng HY, Lane D, Lefranc MP, Clark M, Dübel S (2018) When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. Mabs 10(4):539–546. https://doi.org/10.1080/19420862.2018.1445456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coles A, Gannon H, Cerny A, Kurt-Jones E, Jones S (2010) Inhibitor of growth-4 promotes IκB promoter activation to suppress NF-κB signaling and innate immunity. Proc Natl Acad Sci USA 107(25):11423–11428. https://doi.org/10.1073/pnas.0912116107

Article  PubMed  PubMed Central  Google Scholar 

Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L, Miranda C, Ladetto M, Neri TM, Neri A, Greco A, Mangoni M, Bonati A, Rizzoli V, Giuliani N (2007) The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110(13):4464–4475. https://doi.org/10.1182/blood-2007-02-074617

Article  CAS  PubMed  Google Scholar 

Couchman JR (2009) Commercial antibodies: the good, bad, and really ugly. J Histochem Cytochem 57(1):7–8. https://doi.org/10.1369/jhc.2008.952820

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dantas A, Al Shueili B, Yang Y, Nabbi A, Fink D, Riabowol K (2019) Biological functions of the ING proteins. Cancers (Basel) 11(11):1817. https://doi.org/10.3390/cancers11111817

Article  CAS  PubMed  Google Scholar 

Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W, Lane WS, Tan S, Yang XJ, Côté J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21(1):51–64. https://doi.org/10.1016/j.molcel.2005.12.007

Article  CAS  PubMed  Google Scholar 

Garkavtsev I, Kazarov A, Gudkov A, Riabowol K (1996) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 14(4):415–420. https://doi.org/10.1038/ng1296-415

Article  CAS  PubMed  Google Scholar 

Garkavtsev I, Kozin S, Chervova O, Xu L, Winkler F, Brown E, Jain R (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428(6980):328–332. https://doi.org/10.1038/nature02329

Article  CAS  PubMed  Google Scholar 

He GH, Wagner M, Helbing CC, Sensen CW, Riabowol K (2005) Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 22(1):104–116. https://doi.org/10.1093/molbev/msh256

Article  CAS  PubMed  Google Scholar 

Jacquet K, Binda O (2021) ING proteins: tumour suppressors or oncoproteins. Cancers (Basel) 13(9):2110–2122. https://doi.org/10.3390/cancers13092110

Article  CAS  PubMed  Google Scholar 

Jensen BC, Swigart PM, Simpson PC (2009) Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 379(4):409–412. https://doi.org/10.1007/s00210-008-0368-6

Article  CAS  PubMed  Google Scholar 

Jung T, Höhn A, Grune T (2010) Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 594:173–193. https://doi.org/10.1007/978-1-60761-411-1_13

Article  CAS  PubMed  Google Scholar 

Kalyuzhny AE (2009) The dark side of the immunohistochemical moon: industry. J Histochem Cytochem 57(12):1099–1101. https://doi.org/10.1369/jhc.2009.954867

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kataoka H, Bonnefin P, Vieyra D, Feng X, Hara Y, Miura Y, Joh T, Nakabayashi H, Vaziri H, Harris CC, Riabowol K (2003) ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63(18):5785–5792

CAS  PubMed  Google Scholar 

Krebs W, Schmidt SV, Goren A, De Nardo D, Labzin L, Bovier A, Ulas T, Theis H, Kraut M, Latz E, Beyer M, Schultze JL (2014) Optimization of transcription factor binding map accuracy utilizing knockout-mouse models. Nucleic Acids Res 42(21):13051–13060. https://doi.org/10.1093/nar/gku1078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuligina ES, Sokolenko AP, Bizin IV, Romanko AA, Zagorodnev KA, Anisimova MO, Krylova DD, Anisimova EI, Mantseva MA, Varma AK, Hasan SK, Ni VI, Koloskov AV, Suspitsin EN, Venina AR, Aleksakhina SN, Sokolova TN, Milanović AM, Schürmann P, Prokofyeva DS, Bermisheva MA, Khusnutdinova EK, Bogdanova N, Dörk T, Imyanitov EN (2020) Exome sequencing study of Russian breast cancer patients suggests a predisposing role for USP39. Breast Cancer Res Treat 179(3):731–742. https://doi.org/10.1007/s10549-019-05492-6

Article  PubMed  Google Scholar 

Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15(7):499–504. https://doi.org/10.1038/s41592-018-0038-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Y, Yan R, Wan Q, Lv B, Yang Y, Lv T, Xin W (2020) Inhibitor of growth 2 regulates the high glucose-induced cell cycle arrest and epithelial-to-mesenchymal transition in renal proximal tubular cells. J Physiol Biochem 76(3):373–382. https://doi.org/10.1007/s13105-020-00743-3

Article  CAS  PubMed  Google Scholar 

Mathema V, Koh Y (2012) Inhibitor of growth-4 mediates chromatin modification and has a suppressive effect on tumorigenesis and innate immunity. Tumour Biol 33(1):1–7. https://doi.org/10.1007/s13277-011-0249-3

Article  CAS  PubMed  Google Scholar 

Mulder KW, Wang X, Escriu C, Ito Y, Schwarz RF, Gillis J, Sirokmány G, Donati G, Uribe-Lewis S, Pavlidis P, Murrell A, Markowetz F, Watt FM (2012) Diverse epigenetic strategies interact to control epidermal differentiation. Nat Cell Biol 14(7):753–763. https://doi.org/10.1038/ncb2520

Article  CAS  PubMed  Google Scholar 

Nabbi A, Almami A, Thakur S, Suzuki K, Boland D, Bismar T, Riabowol K (2015) ING3 protein expression profiling in normal human tissues suggests its role in cellular growth and self-renewal. Eur J Cell Biol 94(5):214–222. https://doi.org/10.1016/j.ejcb.2015.03.002

Article  CAS  PubMed  Google Scholar 

Nabbi A, McClurg UL, Thalappilly S, Almami A, Mobahat M, Bismar TA, Binda O, Riabowol KT (2017) ING3 promotes prostate cancer growth by activating the androgen receptor. BMC Med 15(1):103. https://doi.org/10.1186/s12916-017-0854-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K, Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA 98(17):9671–9676. https://doi.org/10.1073/pnas.161151798

Article  CAS  PubMed 

Comments (0)

No login
gif