Aebi H (1974) Catalase. Methods of enzymatic analysis. Elsevier, pp 673–684
Afsartala Z, Hadjighassem M, Shirian S, Ebrahimi-Barough S, Gholami L, Parsamanesh G, Veisimalekshahi Z, Karimzadehbardeei L, Ai J (2023) The effect of collagen and fibrin hydrogels encapsulated with adipose tissue mesenchymal stem cell-derived exosomes for treatment of spinal cord injury in a rat model. Iran J Biotechnol 21(3):e3505
PubMed PubMed Central Google Scholar
Ahmadi F, Zargari M, Nasiry D, Khalatbary AR (2021) Synergistic neuroprotective effects of hyperbaric oxygen and methylprednisolone following contusive spinal cord injury in rat. J Spinal Cord Med 45:1–10
Allison D, Ditor D (2015) Immune dysfunction and chronic inflammation following spinal cord injury. Spinal Cord 53(1):14–18
Article CAS PubMed Google Scholar
Amiri FT, Jafari A, Ahmadi F, Mokhtari H, Raoofi A, Kasmaie FM, Omran M, Alimohammadi MA, Nasiry D (2025) Exosomes derived from human placental mesenchymal stem cells in combination with hyperbaric oxygen therapy enhance neuroregeneration in a rat model of sciatic nerve crush injury. Regen Ther 28:30–40
Article CAS PubMed Google Scholar
Awad BI, Carmody MA, Steinmetz MP (2015) Potential role of growth factors in the management of spinal cord injury. World Neurosurg 83(1):120–131
Bakhtiarimoghadam B, Shirian S, Mirzaei E, Sharifi S, Karimi I, Gharati G, Takallu S, Nazari H (2021) Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogelscaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model. J Biomed Mater Res B Appl Biomater 109(12):2199–2212
Article CAS PubMed Google Scholar
Boato F, Rosenberger K, Nelissen S, Geboes L, Peters EM, Nitsch R, Hendrix S (2013) Absence of IL-1β positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury. J Neuroinflammation 10(1):1–11
Boido M, Ghibaudi M, Gentile P, Favaro E, Fusaro R, Tonda-Turo C (2019) Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci Rep 9(1):6402
Article CAS PubMed PubMed Central Google Scholar
Bonetti LV, Schneider APK, Barbosa S, Ilha J, Faccioni-Heuser MC (2015) Balance and coordination training and endurance training after nerve injury. Muscle Nerve 51(1):83–91
Burke SJ, Lu D, Sparer TE, Karlstad MD, Collier JJ (2014) Transcription of the gene encoding TNF-α is increased by IL-1β in rat and human islets and β-cell lines. Mol Immunol 62(1):54–62
Article CAS PubMed PubMed Central Google Scholar
Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, Xie E, Liu C, Zhang R, Wang Y (2015) Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep 5(1):9017
Article PubMed PubMed Central Google Scholar
Cheshmi H, Mohammadi H, Akbari M, Nasiry D, Rezapour-Nasrabad R, Bagheri M, Abouhamzeh B, Poorhassan M, Mirhoseini M, Mokhtari H (2023) Human placental mesenchymal stem cell-derived exosomes in combination with hyperbaric oxygen synergistically promote recovery after spinal cord injury in rats. Neurotox Res 41:1–15
Christie SD, Comeau B, Myers T, Sadi D, Purdy M, Mendez I (2008) Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg Focus 25(5):E5
Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, Landis ME, Festoff BW (2000) Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp Neurol 166(2):213–226
Article CAS PubMed Google Scholar
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522
Article CAS PubMed Google Scholar
Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77
Article CAS PubMed Google Scholar
Ghaemi A, Ghiasvand M, Omraninava M, Merza MY, Alkhafaji AT, Raoofi A, Nasiry D, Darvishi M, Akhavan-Sigari R (2023) Hyperbaric oxygen therapy and coenzyme Q10 synergistically attenuates damage progression in spinal cord injury in a rat model. J Chem Neuroanat 132:102322
Article CAS PubMed Google Scholar
Hjazi A, Alghamdi A, Aloraini GS, Alshehri MA, Alsuwat MA, Albelasi A, Mashat RM, Alissa M (2024) Combination use of human menstrual blood stem cell-derived exosomes and hyperbaric oxygen therapy, synergistically promote recovery after spinal cord injury in rats. Tissue Cell 88:102378
Article CAS PubMed Google Scholar
Howard V, Reed M (2004) Unbiased stereology: three-dimensional measurement in microscopy. Garland Science, Cham
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L (2023) Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 8(1):245
Article CAS PubMed PubMed Central Google Scholar
Jafari A, Khalatbary AR, Taghiloo S, Mirzaie MS, Nazar E, Poorhassan M, Akbari E, Asadzadeh M, Raoofi A, Nasiry D (2023) Exosomes derived from human placental mesenchymal stem cells in combination with hyperbaric oxygen synergically alleviates spinal cord ischemia-reperfusion injury. Regen Ther 24:407–416
Article CAS PubMed PubMed Central Google Scholar
Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials 21(23):2475–2490
Article CAS PubMed Google Scholar
Kuang P-P, Liu X-Q, Li C-G, He B-X, Xie Y-C, Wu Z-C, Li C-L, Deng X-H, Fu Q-L (2023) Mesenchymal stem cells overexpressing interleukin-10 prevent allergic airway inflammation. Stem Cell Res Ther 14(1):369
Article CAS PubMed PubMed Central Google Scholar
Kwiecien JM, Dabrowski W, Dąbrowska-Bouta B, Sulkowski G, Oakden W, Kwiecien-Delaney CJ, Yaron JR, Zhang L, Schutz L, Marzec-Kotarska B (2020) Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE 15(3):e0226584
Article CAS PubMed PubMed Central Google Scholar
Li J, Wang P, Zhou T, Jiang W, Wu H, Zhang S, Deng L, Wang H (2023) Neuroprotective effects of interleukin 10 in spinal cord injury. Front Mol Neurosci 16:1214294
Article CAS PubMed PubMed Central Google Scholar
Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821
Article CAS PubMed Google Scholar
Lu Y, Shang Z, Zhang W, Pang M, Hu X, Dai Y, Shen R, Wu Y, Liu C, Luo T (2024) Global incidence and characteristics of spinal cord injury since 2000–2021: a systematic review and meta-analysis. BMC Med 22(1):285
Article PubMed PubMed Central Google Scholar
Nasiry Zarrin Ghabaee D, Haresabadi M, Bagheri Nesami M, Esmaeili R, Talebpour Amiri F (2016) Musculoskeletal disorders in nurses and their relationship with occupation-related stress. J Maz Univ Med Sci 25(132):91–102
Patek M, Stewart M (2023) Spinal cord injury. Anaesthesia Intensive Care Med 24:406–411
Patilas C, Varsamos I, Galanis A, Vavourakis M, Zachariou D, Marougklianis V, Kolovos I, Tsalimas G, Karampinas P, Kaspiris A (2024) the role of interleukin-10 in the pathogenesis and treatment of a spinal cord injury. Diagnostics 14(2):151
Article CAS PubMed PubMed Central Google Scholar
Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178
Comments (0)