Anjum F, Kaushik K, Salam A, Yadav A, Nandi CK (2024) Super-resolution microscopy unveils synergistic structural changes of organelles upon point mutation. Adv Biol 8(3):2300399. https://doi.org/10.1002/adbi.202300399
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N (2020) SRRF-stream imaging of optogenetically controlled furrow formation shows localized and coordinated endocytosis and exocytosis mediating membrane remodeling. ACS Synth Biol 9(4):902–919. https://doi.org/10.1021/acssynbio.9b00521
Article CAS PubMed PubMed Central Google Scholar
Chen R, Zhao Y, Li M, Wang Y, Zhang L, Fei P (2020) Efficient super-resolution volumetric imaging by radial fluctuation Bayesian analysis light-sheet microscopy. J Biophotonics 13(8):e201960242. https://doi.org/10.1002/jbio.201960242
Article CAS PubMed Google Scholar
Chen M-M, Xu C-H, Zhao W, Chen H-Y, Xu J-J (2021) Super-resolution electrogenerated chemiluminescence microscopy for single-nanocatalyst imaging. J Am Chem Soc 143(44):18511–18518. https://doi.org/10.1021/jacs.1c07827
Article CAS PubMed Google Scholar
Chen R, Tang X, Zhao Y, Shen Z, Zhang M, Shen Y, Li T, Chung CHY, Zhang L, Wang J, Cui B, Fei P, Guo Y, Du S, Yao S (2023) Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging. Nat Commun 14(1):2854. https://doi.org/10.1038/s41467-023-38452-2
Article CAS PubMed PubMed Central Google Scholar
Chen J, Fang Q, Huang L, Ye X, Jin L, Zhang H, Luo Y, Zhu M, Zhang L, Ji B, Tian X, Xu Y (2024) Deep-learning accelerated super-resolution radial fluctuations (SRRF) enables real-time live cell imaging. Opt Lasers Eng 172:107840. https://doi.org/10.1016/j.optlaseng.2023.107840
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2):195–200. https://doi.org/10.1038/nmeth.1812
Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J, Henriques R (2017) NanoJ-SQUIRREL: quantitative mapping and minimisation of super-resolution optical imaging artefacts. Biophysics. https://doi.org/10.1101/158279
Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J, Henriques R (2018a) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15(4):263–266. https://doi.org/10.1038/nmeth.4605
Article CAS PubMed PubMed Central Google Scholar
Culley S, Tosheva KL, Matos Pereira P, Henriques R (2018b) SRRF: universal live-cell super-resolution microscopy. Int J Biochem Cell Biol 101:74–79. https://doi.org/10.1016/j.biocel.2018.05.014
Article CAS PubMed PubMed Central Google Scholar
Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci 106(52):22287–22292. https://doi.org/10.1073/pnas.0907866106
Article PubMed PubMed Central Google Scholar
Garg R, Anjum F, Salam A, Kaushik K, Sharma S, Sahrawat U, Yadav A, Nandi CK (2023) Tracking the super resolved structure of mitochondria using red emissive carbon nanodots as a fluorescent biomarker. Chem Commun 59(90):13454–13457. https://doi.org/10.1039/D3CC03390B
Gilleron J, Chafik A, Lacas-Gervais S, Tanti J-F, Cormont M (2024) Golgi-associated retrograde protein (GARP) complex-dependent endosomes to trans Golgi network retrograde trafficking is controlled by Rab4b. Cell Mol Biol Lett 29(1):54. https://doi.org/10.1186/s11658-024-00574-w
Article CAS PubMed PubMed Central Google Scholar
Gong X, Zhou L, Yao L, Zhang L, Chen L, Fei Y, Mi L, Wang B, Ma J (2022) Achieving increased resolution and reconstructed image quality with intensity and gradient variance reweighted radial fluctuations. ACS Photonics 9(5):1700–1708. https://doi.org/10.1021/acsphotonics.2c00077
Göttfert F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl SJ, Hell SW (2017) Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc Natl Acad Sci USA 114(9):2125–2130. https://doi.org/10.1073/pnas.1621495114
Article CAS PubMed PubMed Central Google Scholar
Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2):82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
Article CAS PubMed Google Scholar
Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7(1):12471. https://doi.org/10.1038/ncomms12471
Article CAS PubMed PubMed Central Google Scholar
Han Y, Lu X, Zhang Z, Liu W, Chen Y, Liu X, Hao X, Kuang C (2019) Ultra-fast, universal super-resolution radial fluctuations (SRRF) algorithm for live-cell super-resolution microscopy. Opt Express 27(26):38337. https://doi.org/10.1364/OE.27.038337
Article CAS PubMed Google Scholar
Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116
Article CAS PubMed PubMed Central Google Scholar
Johnstone GE, Cairns GS, Patton BR (2019) Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. R Soc Open SCI 6(7):190589. https://doi.org/10.1098/rsos.190589
Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956. https://doi.org/10.1364/ol.24.000954
Article CAS PubMed Google Scholar
Kylies D, Zimmermann M, Haas F, Schwerk M, Kuehl M, Brehler M, Czogalla J, Hernandez LC, Konczalla L, Okabayashi Y, Menzel J, Edenhofer I, Mezher S, Aypek H, Dumoulin B, Wu H, Hofmann S, Kretz O, Wanner N, Puelles VG (2023) Expansion-enhanced super-resolution radial fluctuations enable nanoscale molecular profiling of pathology specimens. Nature Nanotechnol 18(4):336–342. https://doi.org/10.1038/s41565-023-01328-z
Laine RF, Heil HS, Coelho S, Nixon-Abell J, Jimenez A, Wiesner T, Martínez D, Galgani T, Régnier L, Stubb A, Follain G, Webster S, Goyette J, Dauphin A, Salles A, Culley S, Jacquemet G, Hajj B, Leterrier C, Henriques R (2023) High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation. Nat Methods 20(12):1949–1956. https://doi.org/10.1038/s41592-023-02057-w
Article CAS PubMed PubMed Central Google Scholar
Lee Y-H, Zhang S, Mitchell CK, Lin Y-P, O’Brien J (2018) Calcium imaging with super-resolution radial fluctuations. Biosci Bioeng 4(4):78–84
CAS PubMed PubMed Central Google Scholar
Li Y, Liu L, Roberts SK, Wang L (2024a) Super-resolution radial fluctuations microscopy for optimal resolution and fidelity. Opt Lett 49(10):2621. https://doi.org/10.1364/OL.514964
Article CAS PubMed Google Scholar
Li Y, Liu L, Wang L (2024b) Deep learning enhanced fluorescence fluctuations super-resolution microscopy. Third Conference on Biomedical Photonics and Cross-Fusion (BPC 2024), 13271, 56–60. https://doi.org/10.1117/12.3039254
Lloyd A, Donaldson (2022) Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy Abstract Plant Methods 18(1):27. https://doi.org/10.1186/s13007-022-00865-3
Mukamel EA, Babcock H, Zhuang X (2012) Statistical deconvolution for superresolution fluorescence microscopy. Biophys J 102(10):2391–2400. https://doi.org/10.1016/j.bpj.2012.03.070
Article CAS PubMed PubMed Central Google Scholar
Parthasarathy R (2012) Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9(7):724–726. https://doi.org/10.1038/nmeth.2071
Comments (0)