Alme CB, Miao C, Jezek K, Treves A, Moser EI, Moser MB (2014) Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1421056111
Article PubMed PubMed Central Google Scholar
Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A, Chadwick MJ, Degris T, Modayil J, Wayne G, Soyer H, Viola F, Zhang B, Goroshin R, Rabinowitz N, Pascanu R, Beattie C, Petersen S, Sadik A, Gaffney S, King H, Kavukcuoglu K, Hassabis D, Hadsell R, Kumaran D (2018) Vector-based navigation using grid-like representations in artificial agents. Nature. https://doi.org/10.1038/s41586-018-0102-6
Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci. https://doi.org/10.1038/nn1905
Bellmund JLS, Deuker L, Schröder TN, Doeller CF (2016) Grid-cell representations in mental simulation. Elife. https://doi.org/10.7554/eLife.17089
Article PubMed PubMed Central Google Scholar
Boccara CN, Nardin M, Stella F, O’Neill J, Csicsvari J (2019) The entorhinal cognitive map is attracted to goals. Science 363(6434):1443–1447. https://doi.org/10.1126/science.aav4837
Article CAS PubMed Google Scholar
Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser MB (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci. https://doi.org/10.1038/nn.3311
Burak Y (2014) Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2014.01.013
Bush D, Burgess N (2014) A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4017-13.2014
Article PubMed PubMed Central Google Scholar
Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron. https://doi.org/10.1016/j.neuron.2015.07.006
Article PubMed PubMed Central Google Scholar
Butler WN, Hardcastle K, Giocomo LM (2019) Remembered reward locations restructure entorhinal spatial maps. Science 363(6434):1447–1452. https://doi.org/10.1126/science.aav5297
Article CAS PubMed PubMed Central Google Scholar
Chadwick MJ, Jolly AEJ, Amos DP, Hassabis D, Spiers HJ (2015) A goal direction signal in the human entorhinal/subicular region. Curr Biol. https://doi.org/10.1016/j.cub.2014.11.001
Article PubMed PubMed Central Google Scholar
Chaudhuri R, Gerçek B, Pandey B, Peyrache A, Fiete I (2019) The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat Neurosci. https://doi.org/10.1038/s41593-019-0460-x
Dennett DC, Braitenberg V (1986) Vehicles: experiments in synthetic psychology. Philos Rev. https://doi.org/10.2307/2185146
Dordek Y, Soudry D, Meir R, Derdikman D (2016) Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. Elife. https://doi.org/10.7554/eLife.10094
Article PubMed PubMed Central Google Scholar
Edvardsen V (2019) Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat Comput. https://doi.org/10.1007/s11047-016-9575-0
Edvardsen V, Bicanski A, Burgess N (2020) Navigating with grid and place cells in cluttered environments. Hippocampus. https://doi.org/10.1002/hipo.23147
Edvardsen, V., 2015. A passive mechanism for goal-directed navigation using grid cells. In: Proceedings of the 13th European Conference on Artificial Life, ECAL 2015. https://doi.org/10.7551/978-0-262-33027-5-ch039
Edvardsen V (2020) Navigating with distorted grid cells. In: ALIFE 2018 - 2018 Conference on Artificial Life: Beyond AI. https://doi.org/10.1162/isal_a_00053
Erdem UM, Hasselmo M (2012) A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2012.08015.x
Article PubMed PubMed Central Google Scholar
Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus. https://doi.org/10.1002/hipo.10173
Evans T, Bicanski A, Bush D, Burgess N (2016) How environment and self-motion combine in neural representations of space. J Physiol. https://doi.org/10.1113/JP270666
Article PubMed PubMed Central Google Scholar
Fernandez-Leon JAF, Acosta GG (2021) Challenges for neuroscience-based computational intelligence. Int J Comput Intell Stud 10:232. https://doi.org/10.1504/ijcistudies.2021.120507
Fernandez-Leon JA, Acosta GG (2022) Uncovering the secrets of the concept of place in cognitive maps aided by artificial intelligence. Cogn Comput. https://doi.org/10.1007/s12559-022-10064-w
Fernandez-Leon JA, Uysal AK, Ji D (2022b) Place cells dynamically refine grid cell activities to reduce error accumulation during path integration in a continuous attractor model. Sci Rep 12(1):21443. https://doi.org/10.1038/s41598-022-25863-2
Article CAS PubMed PubMed Central Google Scholar
Fernandez-Leon JA, Uysal AK, Ji D (2022a) Place-grid cells dynamic coupling enables error minimization for path integration. In: Proceedings of the 4th Interdisciplinary Navigation Symposium, INav 2022. p. 14
Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci. https://doi.org/10.1523/JNEUROSCI.5684-07.2008
Article PubMed PubMed Central Google Scholar
Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4353-05.2006
Article PubMed PubMed Central Google Scholar
Fuhs MC, Redish AD, Touretzky DS (1998) A visually driven hippocampal place cell model. Comput Neurosci: Trends Res 1998:379–384. https://doi.org/10.1007/978-1-4615-4831-7_63
Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264. https://doi.org/10.1126/science.1099901
Article CAS PubMed Google Scholar
Fyhn M, Hafting T, Witter MP, Moser EI, Moser MB (2008) Grid cells in mice. Hippocampus. https://doi.org/10.1002/hipo.20472
Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser MB, Moser EI (2022) Toroidal topology of population activity in grid cells. Nature. https://doi.org/10.1038/s41586-021-04268-7
Article PubMed PubMed Central Google Scholar
Ginosar G, Aljadeff J, Las L, Derdikman D, Ulanovsky N (2023) Are grid cells used for navigation? ON local metrics, subjective spaces, and black holes. Neuron 111(12):1858–1875
Article CAS PubMed Google Scholar
Guanella A, Verschure PFMJ (2007) Prediction of the position of an animal based on populations of grid and place cells: a comparative simulation study. J Integr Neurosci. https://doi.org/10.1142/S0219635207001556
Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a twisted torus topology. Int J Neural Syst 17(04):231–240. https://doi.org/10.1142/S0129065707001093
Comments (0)