Grid cell modules coordination improves accuracy and reliability for spatial navigation

Alme CB, Miao C, Jezek K, Treves A, Moser EI, Moser MB (2014) Place cells in the hippocampus: eleven maps for eleven rooms. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1421056111

Article  PubMed  PubMed Central  Google Scholar 

Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, Pritzel A, Chadwick MJ, Degris T, Modayil J, Wayne G, Soyer H, Viola F, Zhang B, Goroshin R, Rabinowitz N, Pascanu R, Beattie C, Petersen S, Sadik A, Gaffney S, King H, Kavukcuoglu K, Hassabis D, Hadsell R, Kumaran D (2018) Vector-based navigation using grid-like representations in artificial agents. Nature. https://doi.org/10.1038/s41586-018-0102-6

Article  PubMed  Google Scholar 

Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci. https://doi.org/10.1038/nn1905

Article  PubMed  Google Scholar 

Bellmund JLS, Deuker L, Schröder TN, Doeller CF (2016) Grid-cell representations in mental simulation. Elife. https://doi.org/10.7554/eLife.17089

Article  PubMed  PubMed Central  Google Scholar 

Boccara CN, Nardin M, Stella F, O’Neill J, Csicsvari J (2019) The entorhinal cognitive map is attracted to goals. Science 363(6434):1443–1447. https://doi.org/10.1126/science.aav4837

Article  CAS  PubMed  Google Scholar 

Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser MB (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci. https://doi.org/10.1038/nn.3311

Article  PubMed  Google Scholar 

Burak Y (2014) Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2014.01.013

Article  PubMed  Google Scholar 

Bush D, Burgess N (2014) A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4017-13.2014

Article  PubMed  PubMed Central  Google Scholar 

Bush D, Barry C, Manson D, Burgess N (2015) Using grid cells for navigation. Neuron. https://doi.org/10.1016/j.neuron.2015.07.006

Article  PubMed  PubMed Central  Google Scholar 

Butler WN, Hardcastle K, Giocomo LM (2019) Remembered reward locations restructure entorhinal spatial maps. Science 363(6434):1447–1452. https://doi.org/10.1126/science.aav5297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chadwick MJ, Jolly AEJ, Amos DP, Hassabis D, Spiers HJ (2015) A goal direction signal in the human entorhinal/subicular region. Curr Biol. https://doi.org/10.1016/j.cub.2014.11.001

Article  PubMed  PubMed Central  Google Scholar 

Chaudhuri R, Gerçek B, Pandey B, Peyrache A, Fiete I (2019) The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat Neurosci. https://doi.org/10.1038/s41593-019-0460-x

Article  PubMed  Google Scholar 

Dennett DC, Braitenberg V (1986) Vehicles: experiments in synthetic psychology. Philos Rev. https://doi.org/10.2307/2185146

Article  Google Scholar 

Dordek Y, Soudry D, Meir R, Derdikman D (2016) Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. Elife. https://doi.org/10.7554/eLife.10094

Article  PubMed  PubMed Central  Google Scholar 

Edvardsen V (2019) Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat Comput. https://doi.org/10.1007/s11047-016-9575-0

Article  Google Scholar 

Edvardsen V, Bicanski A, Burgess N (2020) Navigating with grid and place cells in cluttered environments. Hippocampus. https://doi.org/10.1002/hipo.23147

Article  PubMed  Google Scholar 

Edvardsen, V., 2015. A passive mechanism for goal-directed navigation using grid cells. In: Proceedings of the 13th European Conference on Artificial Life, ECAL 2015. https://doi.org/10.7551/978-0-262-33027-5-ch039

Edvardsen V (2020) Navigating with distorted grid cells. In: ALIFE 2018 - 2018 Conference on Artificial Life: Beyond AI. https://doi.org/10.1162/isal_a_00053

Erdem UM, Hasselmo M (2012) A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2012.08015.x

Article  PubMed  PubMed Central  Google Scholar 

Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus. https://doi.org/10.1002/hipo.10173

Article  PubMed  Google Scholar 

Evans T, Bicanski A, Bush D, Burgess N (2016) How environment and self-motion combine in neural representations of space. J Physiol. https://doi.org/10.1113/JP270666

Article  PubMed  PubMed Central  Google Scholar 

Fernandez-Leon JAF, Acosta GG (2021) Challenges for neuroscience-based computational intelligence. Int J Comput Intell Stud 10:232. https://doi.org/10.1504/ijcistudies.2021.120507

Article  Google Scholar 

Fernandez-Leon JA, Acosta GG (2022) Uncovering the secrets of the concept of place in cognitive maps aided by artificial intelligence. Cogn Comput. https://doi.org/10.1007/s12559-022-10064-w

Article  Google Scholar 

Fernandez-Leon JA, Uysal AK, Ji D (2022b) Place cells dynamically refine grid cell activities to reduce error accumulation during path integration in a continuous attractor model. Sci Rep 12(1):21443. https://doi.org/10.1038/s41598-022-25863-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez-Leon JA, Uysal AK, Ji D (2022a) Place-grid cells dynamic coupling enables error minimization for path integration. In: Proceedings of the 4th Interdisciplinary Navigation Symposium, INav 2022. p. 14

Fiete IR, Burak Y, Brookings T (2008) What grid cells convey about rat location. J Neurosci. https://doi.org/10.1523/JNEUROSCI.5684-07.2008

Article  PubMed  PubMed Central  Google Scholar 

Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4353-05.2006

Article  PubMed  PubMed Central  Google Scholar 

Fuhs MC, Redish AD, Touretzky DS (1998) A visually driven hippocampal place cell model. Comput Neurosci: Trends Res 1998:379–384. https://doi.org/10.1007/978-1-4615-4831-7_63

Article  Google Scholar 

Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264. https://doi.org/10.1126/science.1099901

Article  CAS  PubMed  Google Scholar 

Fyhn M, Hafting T, Witter MP, Moser EI, Moser MB (2008) Grid cells in mice. Hippocampus. https://doi.org/10.1002/hipo.20472

Article  PubMed  Google Scholar 

Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser MB, Moser EI (2022) Toroidal topology of population activity in grid cells. Nature. https://doi.org/10.1038/s41586-021-04268-7

Article  PubMed  PubMed Central  Google Scholar 

Ginosar G, Aljadeff J, Las L, Derdikman D, Ulanovsky N (2023) Are grid cells used for navigation? ON local metrics, subjective spaces, and black holes. Neuron 111(12):1858–1875

Article  CAS  PubMed  Google Scholar 

Guanella A, Verschure PFMJ (2007) Prediction of the position of an animal based on populations of grid and place cells: a comparative simulation study. J Integr Neurosci. https://doi.org/10.1142/S0219635207001556

Article  PubMed  Google Scholar 

Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a twisted torus topology. Int J Neural Syst 17(04):231–240. https://doi.org/10.1142/S0129065707001093

Article  PubMed 

Comments (0)

No login
gif