Conditional probabilistic-based domain adaptation for cross-subject EEG-based emotion recognition

Anuragi A, Sisodia DS, Pachori RB (2022) EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and nca feature selection method. Inf Sci 610:508–524

Article  Google Scholar 

Bengson JJ, Kelley TA, Zhang X et al (2014) Spontaneous neural fluctuations predict decisions to attend. J Cognit Neurosci 26(11):2578–2584

Article  Google Scholar 

Chen H, Jin M, Li Z et al (2021) MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition. Front Neurosci 15:778488

Article  PubMed  PubMed Central  Google Scholar 

Du X, Ma C, Zhang G et al (2020) An efficient lstm network for emotion recognition from multichannel eeg signals. IEEE Trans Affect Comput 13(3):1528–1540

Article  Google Scholar 

Haeusser P, Frerix T, Mordvintsev A, et al (2017) Associative domain adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2765–2773

Hamida STB, Ahmed B, Penzel T (2015) A novel insomnia identification method based on hjorth parameters. In: 2015 IEEE International symposium on signal processing and information technology, pp 548–552

Hasson U, Nir Y, Levy I et al (2004) Intersubject synchronization of cortical activity during natural vision. Science 303(5664):1634–1640

Article  CAS  PubMed  Google Scholar 

Hatamikia S, Nasrabadi AM (2014) Recognition of emotional states induced by music videos based on nonlinear feature extraction and som classification. In: 2014 21th Iranian conference on biomedical engineering, pp 333–337

He Z, Zhong Y, Pan J (2022) Joint temporal convolutional networks and adversarial discriminative domain adaptation for eeg-based cross-subject emotion recognition. In: 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, pp 3214–3218

Hwang S, Hong K, Son G et al (2020) Learning cnn features from de features for eeg-based emotion recognition. Pattern Anal Appl 23:1323–1335

Article  Google Scholar 

Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from eeg. IEEE Trans Affect Comput 5(3):327–339

Article  Google Scholar 

Jiménez-Guarneros M, Fuentes-Pineda G (2023) Learning a robust unified domain adaptation framework for cross-subject eeg-based emotion recognition. Biomed Signal Process Control 86:105138

Article  Google Scholar 

Kong W, Kong X, Fan Q et al (2019) Task-free brainprint recognition based on low-rank and sparse decomposition model. Int J Data Min Bioinform 22(3):280–300

Article  Google Scholar 

Li C, Li P, Chen Z et al (2024) Brain network manifold learned by cognition-inspired graph embedding model for emotion recognition. IEEE Trans Syst Man Cybern: Syst 54(12):7794–7808

Article  Google Scholar 

Li H, Jin YM, Zheng WL, et al (2018) Cross-subject emotion recognition using deep adaptation networks. In: Neural information processing: 25th international conference, pp 403–413

Li J, Qiu S, Du C et al (2019) Domain adaptation for eeg emotion recognition based on latent representation similarity. IEEE Trans Cognit Dev Syst 12(2):344–353

Article  Google Scholar 

Li J, Qiu S, Shen YY et al (2019) Multisource transfer learning for cross-subject eeg emotion recognition. IEEE Trans Cybern 50(7):3281–3293

PubMed  Google Scholar 

Li P, Liu H, Si Y et al (2019) Eeg based emotion recognition by combining functional connectivity network and local activations. IEEE Trans Biomed Eng 66(10):2869–2881

Article  PubMed  Google Scholar 

Li Y, Wang L, Zheng W et al (2020) A novel bi-hemispheric discrepancy model for eeg emotion recognition. IEEE Trans Cognit Dev Syst 13(2):354–367

Article  Google Scholar 

Li Z, Zhu E, Jin M et al (2022) Dynamic domain adaptation for class-aware cross-subject and cross-session eeg emotion recognition. IEEE J Biomed Health Inform 26(12):5964–5973

Article  PubMed  Google Scholar 

Liu Y, Sourina O (2014) Real-time subject-dependent eeg-based emotion recognition algorithm. Special Issue on Cyberworlds, Transactions on Computational Science XXIII, pp 199–223

Long M, Cao Y, Wang J, et al (2015) Learning transferable features with deep adaptation networks. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine learning, pp 97–105

Luo Y, Lu BL (2018) Eeg data augmentation for emotion recognition using a conditional wasserstein gan. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society, pp 2535–2538

Peng Y, Liu H, Kong W, et al (2022a) Joint eeg feature transfer and semi-supervised cross-subject emotion recognition. IEEE Trans Ind Inform

Peng Y, Wang W, Kong W et al (2022) Joint feature adaptation and graph adaptive label propagation for cross-subject emotion recognition from eeg signals. IEEE Trans Affect Comput 13(4):1941–1958

Article  Google Scholar 

Raghavendra B, Dutt DN, Halahalli HN et al (2009) Complexity analysis of eeg in patients with schizophrenia using fractal dimension. Physiol Meas 30(8):795

Article  CAS  PubMed  Google Scholar 

She Q, Zhang C, Fang F, et al (2023) Multisource associate domain adaptation for cross-subject and cross-session eeg emotion recognition. IEEE Trans Instrum Meas

Shen X, Liu X, Hu X et al (2023) Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition. IEEE Trans Affect Comput 14(3):2496–2511

Article  Google Scholar 

Shu R, Bui HH, Narui H, et al (2018) A dirt-t approach to unsupervised domain adaptation. arXiv:abs/1802.08735

Soroush MZ, Maghooli K, Setarehdan SK et al (2017) A review on eeg signals based emotion recognition. Int Clin Neurosci J 4(4):118

Article  Google Scholar 

Sun B, Saenko K (2016) Deep coral: correlation alignment for deep domain adaptation. In: Computer vision—ECCV 2016 workshops, pp 443–450

Thuwajit P, Rangpong P, Sawangjai P et al (2021) Eegwavenet: multiscale cnn-based spatiotemporal feature extraction for eeg seizure detection. IEEE Trans Ind Inf 18(8):5547–5557

Article  Google Scholar 

Tzeng E, Hoffman J, Zhang N, et al (2014) Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474

Wang F, Zhang W, Xu Z et al (2021) A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition. Neural Comput Appl 33:9061–9073

Article  Google Scholar 

Yu L (2009) Eeg de-noising based on wavelet transformation. In: 2009 3rd International conference on bioinformatics and biomedical engineering, pp 1–4

Zhao D, Wang Y, Wang Q et al (2019) Comparative analysis of different characteristics of automatic sleep stages. Comput Methods Programs Biomed 175:53–72

Article  PubMed  Google Scholar 

Zhao LM, Yan X, Lu BL (2021) Plug-and-play domain adaptation for cross-subject eeg-based emotion recognition. In: Proceedings of the AAAI conference on artificial intelligence, pp 863–870

Zheng WL, Liu W, Lu Y et al (2018) Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Trans Cybern 49(3):1110–1122

Article  PubMed  Google Scholar 

Zhou R, Zhang Z, Fu H, et al (2023) Pr-pl: A novel prototypical representation based pairwise learning framework for emotion recognition using eeg signals. IEEE Trans Affect Comput, pp 1–14

Zhou R, Ye W, Zhang Z, et al (2024) Eegmatch: learning with incomplete labels for semisupervised eeg-based cross-subject emotion recognition. IEEE Trans Neural Netw Learn Syst, pp 1–15

Comments (0)

No login
gif