Asabuki T, Hiratani N, Fukai T (2018) Interactive reservoir computing for chunking information streams. PLoS Comput Biol 14(10):e1006400
Article PubMed PubMed Central Google Scholar
Averbakh I (2001) On the complexity of a class of combinatorial optimization problems with uncertainty. Math Program 90:263–272
Burbank KS (2015) Mirrored STDP implements autoencoder learning in a network of spiking neurons. PLoS Comput Biol 11(12):e1004566
Article PubMed PubMed Central Google Scholar
Cortex HE (1993) Dissociation of object and spatial visual processing pathways in. Funct Organisation Human Vis Cortex Wenner-Gren Int Ser 61:329
Cueva CJ, Wei XX (2018) Emergence of grid-like representations by training recurrent neural networks to perform spatial localization. arXiv preprint arXiv:1803.07770
Feng P, Ye L (2024) Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks. Cogn Neurodyn 1–12
Ferrante O et al (2018) Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex 102:67–95
Fiser J, Aslin RN (2001) Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychol Sci 12(6):499–504
Article CAS PubMed Google Scholar
Flesch T et al (2023) Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals. PLoS Comput Biol 19(1):e1010808
Article CAS PubMed PubMed Central Google Scholar
Fonollosa J, Neftci E, Rabinovich M (2015) Learning of chunking sequences in cognition and behavior. PLoS Comput Biol 11(11):e1004592
Article PubMed PubMed Central Google Scholar
French RM, Addyman C, Mareschal D (2011) TRACX: a recognition-based connectionist framework for sequence segmentation and chunk extraction. Psychol Rev 118(4):614
Fukai T, Asabuki T, Haga T (2021) Neural mechanisms for learning hierarchical structures of information. Curr Opin Neurobiol 70:145–153
Article CAS PubMed Google Scholar
Gao S et al (2025) SG-SNN: a self-organizing spiking neural network based on temporal information. Cogn Neurodyn 19(1):14
Girosi F, Jones M, Poggio T (1995) Regularization theory and neural networks architectures. Neural Comput 7(2):219–269
Gobet F et al (2001) Chunking mechanisms in human learning. Trends Cogn Sci 5(6):236–243
Article CAS PubMed Google Scholar
Isbilen ES et al (2020) Statistically induced chunking recall: a memory-based approach to statistical learning. Cogn Sci 44(7):e12848
Karuza EA et al (2017) Neural signatures of spatial statistical learning: characterizing the extraction of structure from complex visual scenes. J Cogn Neurosci 29(12):1963–1976
Article PubMed PubMed Central Google Scholar
Lafer-Sousa R, Conway BR, Kanwisher NG (2016) Color-biased regions of the ventral visual pathway lie between face-and place-selective regions in humans, as in macaques. J Neurosci 36(5):1682–1697
Article CAS PubMed PubMed Central Google Scholar
Lindsay GW et al (2017) Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J Neurosci 37(45):11021–11036
Article CAS PubMed PubMed Central Google Scholar
Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560
Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14(4):481–487
Article CAS PubMed Google Scholar
Orbán G et al (2008) Bayesian learning of visual chunks by human observers. Proc Natl Acad Sci 105(7):2745–2750
Article PubMed PubMed Central Google Scholar
Pan C et al (2024) Set-pMAE: spatial-spEctral-temporal based parallel masked autoEncoder for EEG emotion recognition. Cogn Neurodyn 1–17.
Pereira RC et al (2020) Reviewing autoencoders for missing data imputation: technical trends, applications and outcomes. J Artif Intell Res 69:1255–1285
Phillips TR et al (2021) An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion. Int J Numer Meth Eng 122(15):3780–3811
Qiao Y, Zhao Q (2024) SST-CRAM: spatial-spectral-temporal based convolutional recurrent neural network with lightweight attention mechanism for EEG emotion recognition. Cogn Neurodyn 18(5):2621–2635
Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276(5313):821–824
Article CAS PubMed Google Scholar
Rowchan K et al (2025) Visual statistical learning alters low-dimensional cortical architecture. J Neurosci 45(17)
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536
Saffran JR, Aslin RN, Newport EL (1996) Statistical learning by 8-month-old infants. Science 274(5294):1926–1928
Article CAS PubMed Google Scholar
Sakagami M, Tsutsui K-I (1999) The hierarchical organization of decision making in the primate prefrontal cortex. Neurosci Res 34(2):79–89
Article CAS PubMed Google Scholar
Schuster P (2000) Taming combinatorial explosion. Proc Natl Acad Sci 97(14):7678–7680
Article CAS PubMed PubMed Central Google Scholar
Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034
Song Y et al (2023) Recovering generalization via pre-training-like knowledge distillation for out-of-distribution visual question answering. IEEE Trans Multimedia 26:837–851
Thorat S, Quek GL, Peelen MV (2022) Statistical learning of distractor co-occurrences facilitates visual search. J Vis 22(10):2–2
Article PubMed PubMed Central Google Scholar
Turk-Browne NB, Jungé JA, Scholl BJ (2005) The automaticity of visual statistical learning. J Exp Psychol Gen 134(4):552
Turk-Browne NB et al (2009) Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci 21(10):1934–1945
Article PubMed PubMed Central Google Scholar
Tyulmankov D, Yang GR, Abbott L (2022) Meta-learning synaptic plasticity and memory addressing for continual familiarity detection. Neuron 110(3):544-557.e8
Article CAS PubMed Google Scholar
Velarde OM, Makse HA, Parra LC (2023) Architecture of the brain’s visual system enhances network stability and performance through layers, delays, and feedback. PLoS Comput Biol 19(11):e1011078
Article CAS PubMed PubMed Central Google Scholar
Wang R et al (2023) Brain works principle followed by neural information processing: a review of novel brain theory. Artif Intell Rev 56(Suppl 1):285–350
Comments (0)