Arandjelovic R, Gronat P, Torii A, Pajdla T, Sivic J. Netvlad: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 5297–5307. 2016.
Choy C, Gwak J, Savarese S. 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 3075–3084. 2019.
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. An image is worth 16x16 words: transformers for image recognition at scale. In: 2021 International Conference on Learning Representations (ICLR). 2021.
Fan Y, Du X, Luo L, Shen J. Fresco: frequency-domain scan context for lidar-based place recognition with translation and rotation invariance. In: 2022 International Conference on Control, Automation, Robotics and Vision (ICARCV), p. 576–583. 2022.
Fan Z, Song Z, Liu H, Lu Z, He J, Du X. Svt-Net: super light-weight sparse voxel transformer for large scale place recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), p. 551–560. 2022.
Fan Z, Song Z, Zhang W, Liu H, He J, Du X. RPR-Net: a point cloud-based rotation-aware large scale place recognition network. In: European Conference on Computer Vision (ECCV), p. 709–725. Springer. 2022.
Hou Z, Yan Y, Xu C, Kong H. HiTPR: hierarchical transformer for place recognition in point cloud. In: 2022 International Conference on Robotics and Automation (ICRA), p. 2612–2618. 2022.
Hui L, Cheng M, Xie J, Yang J, Cheng MM. Efficient 3D point cloud feature learning for large-scale place recognition. IEEE Trans Image Process. 2022;31:1258–70.
Hui L, Yang H, Cheng M, Xie J, Yang J. Pyramid point cloud transformer for large-scale place recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR), p. 6098–6107. 2021.
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 2015 International Conference on Machine Learning (ICML), p. 448–456. 2015.
Jiang C, Huang K, Wu J, Wang X, Xiao J, Hussain A. PointGS: bridging and fusing geometric and semantic space for 3D point cloud analysis. Inform Fusion. 2023;91:316–26.
Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Symposium on geometry processing, vol. 6, p. 156–164. 2003.
Komorowski J. MinkLoc3D: point cloud based large-scale place recognition. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), p. 1790–1799. 2021.
Li L, Kong X, Zhao X, Huang T, Li W, Wen F, Zhang H, Liu Y. RINet: efficient 3D lidar-based place recognition using rotation invariant neural network. IEEE Robot Autom Lett. 2022;7(2):4321–8.
Lin CE, Song J, Zhang R, Zhu M, Ghaffari M. Se (3)-equivariant point cloud-based place recognition. In: 2023 Conference on robot learning, p. 1520–1530. 2023.
Lin J, Zeng X, Pan Y, Ren S, Bao Y. Intelligent inspection guidance of urethral endoscopy based on slam with blood vessel attentional features. Cogn Comput. 2024;16(3):1161–75.
Liu Z, Zhou S, Suo C, Yin P, Chen W, Wang H, Li H, Liu YH. LPD-Net: 3D point cloud learning for large-scale place recognition and environment analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), p. 2831–2840. 2019.
Luo L, Cao SY, Han B, Shen HL, Li J. BVMatch: lidar-based place recognition using bird’s-eye view images. IEEE Robot Autom Lett. 2021;6(3):6076–83.
Ma J, Zhang J, Xu J, Ai R, Gu W, Chen X. OverlapTransformer: an efficient and yaw-angle-invariant transformer network for lidar-based place recognition. IEEE Robot Autom Lett. 2022;7(3):6958–65.
Ma X, Qin C, You H, Ran H, Fu Y. Rethinking network design and local geometry in point cloud: a simple residual MLP framework. In: 2022 International Conference on Learning Representations (ICLR). 2022.
Maddern W, Pascoe G, Linegar C, Newman P. 1 year, 1000 km: the oxford robotcar dataset. Int J Robot Res. 2017;36(1):3–15.
Qi CR, Su H, Mo K, Guibas LJ. PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 652–660. 2017.
Qi CR, Yi L, Su H, Guibas LJ. PointNet++: deep hierarchical feature learning on point sets in a metric space. In: 2017 Advances in Neural Information Processing Systems (NIPS), p. 5099–5108. 2017.
Rusu RB, Cousins S. 3D is here: point cloud library (PCL). In: 2011 IEEE International Conference on Robotics and Rutomation (ICRA), p. 1–4. 2011.
Schubert S, Neubert P, Pöschmann J, Protzel P. Circular convolutional neural networks for panoramic images and laser data. In: 2019 IEEE intelligent vehicles symposium (IV), p. 653–660. 2019.
Shen K, Zuo J, Li Y, Zuo S, Guo W. Observability analysis and optimization of cooperative navigation system with a low-cost inertial sensor array. IEEE Internet Things J. 2023;10(11):9863–77.
Sun M, Xiao J, Lim EG. Iterative shrinking for referring expression grounding using deep reinforcement learning. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 14060–14069. 2021.
Sun M, Xiao J, Lim EG, Liu S, Goulermas JY. Discriminative triad matching and reconstruction for weakly referring expression grounding. IEEE Trans Pattern Anal Mach Intell. 2021;43(11):4189–95.
Tailor SA, de Jong R, Azevedo T, Mattina M, Maji P. Towards efficient point cloud graph neural networks through architectural simplification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), p. 2095–2104. 2021.
Uy MA, Lee GH. PointNetVLAD: deep point cloud based retrieval for large-scale place recognition. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 4470–4479. 2018.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: 2017 Advances in Neural Information Processing Systems (NIPS), p. 5998–6008. 2017.
Weng S, Zhang R, Li G. ERINet: effective rotation invariant network for point cloud based place recognition. In: 2022 IEEE International conference on Visual Communications and Image Processing (VCIP), p. 1–5. 2022.
Wu J, Sun M, Jiang C, Liu J, Smith J, Zhang Q. Context-based local-global fusion network for 3D point cloud classification and segmentation. Expert Syst Appl. 2024;251.
Wu J, Sun M, Xu H, Jiang C, Ma W, Zhang Q. Class agnostic and specific consistency learning for weakly-supervised point cloud semantic segmentation. Pattern Recogn. 2025;158: 111067.
Wu J, Zhou W, Lei J, Li Q, Yu L. LBENet: lightweight boundary enhancement network for detecting salient objects in RGB-D images. Optik. 2022;271:170204.
Wu J, Zhou W, Luo T, Yu L, Lei J. Multiscale multilevel context and multimodal fusion for RGB-D salient object detection. Signal Process. 2021;178:107766.
Xia Y, Gladkova M, Wang R, Li Q, Stilla U, Henriques JF, Cremers D. Casspr: cross attention single scan place recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), p. 8461–8472. 2023.
Xia Y, Shi L, Ding Z, Henriques JF, Cremers D. Text2Loc: 3D point cloud localization from natural language. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 14958–14967. 2024.
Xia Y, Xu Y, Li S, Wang R, Du J, Cremers D, Stilla U. SOE-Net: a self-attention and orientation encoding network for point cloud based place recognition. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 11348–11357. 2021.
Xie L, Liu Z, Sun Y, Zhu Y. Investigating the influence of scene video on EEG-based evaluation of interior sound in passenger cars. Cognitive computation, p. 1–18. 2024.
Xie Y, Wang B, Wang H, Liang F, Zhang W, Dong Z, Yang B. Look at the whole scene: General point cloud place recognition by classification proxy. ISPRS J Photogramm Remote Sens. 2024;215:15–30.
Xu H, Jin X, Wang Q, Hussain A, Huang K. Exploiting attention-consistency loss for spatial-temporal stream action recognition. ACM Trans Multimed Comput Commun Appl. 2022;18(2s):1–15.
Xu TX, Guo YC, Li Z, Yu G, Lai YK, Zhang SH. TransLoc3D: point cloud based large-scale place recognition using adaptive receptive fields. arXiv:2105.11605. 2021.
Yin P, Wang F, Egorov A, Hou J, Zhang J, Choset H. SeqSphereVLAD: sequence matching enhanced orientation-invariant place recognition. In: 2020 IEEE/RSJ International conference on Intelligent Robots and Systems (IROS), p. 5024–5029. 2020.
Zhang W, Xiao C. PCAN: 3D attention map learning using contextual information for point cloud based retrieval. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 12436–12445. 2019.
Zhao H, Jiang L, Jia J, Torr PH, Koltun V. Point transformer In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), p. 16259–16268. 2021.
Zhou W, Wu J, Lei J, Hwang JN, Yu L. Salient object detection in stereoscopic 3D images using a deep convolutional residual autoencoder. IEEE Trans Multimedia. 2020;23:3388–99.
Zhou Z, Zhao C, Adolfsson D, Su S, Gao Y, Duckett T, Sun L. NDT-Transformer: large-scale 3D point cloud localisation using the normal distribution transform representation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), p. 5654–5660. 2021.
Comments (0)