Li L, Xue M, Zhang Z, Chen H, Wu X. Certainty-based preference completion. Data Intell. 2022;4(1):112–33.
Liu A, Wu Q, Liu Z, Xia L. Near-neighbor methods in random preference completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019;33:4336–4343.
Liu NN, Yang Q. Eigenrank: a ranking-oriented approach to collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2008;83–90.
Xia L. Learning and decision-making from rank data. Synthesis Lectures Artif Intell Mach Learn. 2019;13(1):1–159.
Article MathSciNet Google Scholar
Doignon JP, Pekeč A, Regenwetter M. The repeated insertion model for rankings: missing link between two subset choice models. Psychometrika. 2004;69(1):33–54.
Article MathSciNet Google Scholar
Lu Y, Zhang Y, Richter F, Seidl T. k-nearest neighbor based clustering with shape alternation adaptivity. In: Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), 2020;1–8.
Sanz-Cruzado J, Castells P, López E. A simple multi-armed nearest-neighbor bandit for interactive recommendation. In: Proceedings of the 13th ACM Conference on Recommender Systems, 2019;358–362.
Yang C, Liu T, Liu L, Chen X. A nearest neighbor based personal rank algorithm for collaborator recommendation. In: Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), 2018;1–5.
Zhang Y, Gong Z, Hao Z, Xu J. A cognitive uncertainty calculation method based on probabilistic linguistic term set and applications in geopolitical risk assessment. Cogn Comput. 2023;1–16.
Cai F, Chen H. A probabilistic model for information retrieval by mining user behaviors. Cogn Comput. 2016;8(3):494–504.
Cheng W, Hüllermeier E. A simple instance-based approach to multilabel classification using the mallows model. In: Working Notes of the First International Workshop on Learning from Multi-Label Data, 2009;28–38.
Mallows CL. Non-null ranking models. Biometrika. 1957;44(1/2):114–30.
Article MathSciNet Google Scholar
Thurstone LL. A law of comparative judgment. Psychol Rev. 1927;34(4):273.
Debreu G. Individual choice behavior: a theoretical analysis. Am Econ Rev. 1960;50(1):186–8.
Plackett RL. The analysis of permutations. J Royal Stat Soc Series C: Appl Stat. 1975;24(2):193–202.
Irurozki E, Calvo B, Lozano JA. Permallows: an r package for mallows and generalized mallows models. J Stat Softw. 2016;2016(71):1–30.
Lebanon G, Mao Y. Non-parametric modeling of partially ranked data. J Mach Learn Res. 2008;2008(9):2401–29.
Katz-Samuels J, Scott C. Nonparametric preference completion. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. 2018;84:632–641.
Gnedin A, Olshanski G. The two-sided infinite extension of the mallows model for random permutations. Adv Appl Math. 2012;48(5):615–39.
Article MathSciNet Google Scholar
Meila M, Bao L. Estimation and clustering with infinite rankings. 2012. arXiv:1206.3270
D’Elia A, Piccolo D. A mixture model for preferences data analysis. Comput Stat Data Anal. 2005;49(3):917–34.
Article MathSciNet Google Scholar
Meila M, Chen H. Dirichlet process mixtures of generalized mallows models. 2012. arXiv:1203.3496
Murphy TB, Martin D. Mixtures of distance-based models for ranking data. Comput Stat Data Anal. 2003;41(3–4):645–55.
Article MathSciNet Google Scholar
Crispino M, Mollica C, Astuti V, Tardella L. Efficient and accurate inference for mixtures of Mallows models with Spearman distance. Stat Comput. 2023;33(5):98.
Article MathSciNet Google Scholar
Vojnovic M, Yun S. Parameter estimation for generalized Thurstone choice models. In: Proceedings of the 2016 International Conference on Machine Learning, 2016;498–506.
Capponi M, Gervasi R, Mastrogiacomo L, Franceschini F. Assessing perceived assembly complexity in human-robot collaboration processes: a proposal based on Thurstone’s law of comparative judgement. Int J Prod Res. 2024;62(14):5315–35.
Hajek B, Oh S, Xu J. Minimax-optimal inference from partial rankings. In: Proceedings of the 2014 Annual Conference on Neural Information Processing Systems 2014;1475–1483.
Nguyen D, Zhang AY. Efficient and accurate learning of mixtures of Plackett-Luce models. In: Proceedings of Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023. 2023;9294–9301.
Wu N, Xu Y, Kilgour DM, Fang L. Composite decision makers in the graph model for conflict resolution: hesitant fuzzy preference modeling. IEEE Trans Syst, Man, Cybernet: Syst. 2020;51(12):7889–902.
Fan ZP, Xiao SH, Hu GF. An optimization method for integrating two kinds of preference information in group decision-making. Comput Indust Eng. 2004;46(2):329–35.
Li J, Ye J, Niu Ll, Chen Q, Wang Zx. Decision-making models based on satisfaction degree with incomplete hesitant fuzzy preference relation. Soft Comput. 2022;26(7):3129–3145.
Li L, Liu P, Bu C, Zhang Z, Wu X. Fuzzy ranking-based preference completion via graph pattern matching and rematching. IEEE Trans Emerg Top Comput Intell. 2024;8(2):2009–21.
Valdivia A, Luzíón MV, Herrera F. Neutrality in the sentiment analysis problem based on fuzzy majority. In: Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017;1–6.
Ahn BS. A new approach to solve the constrained OWA aggregation problem. IEEE Trans Fuzzy Syst. 2016;25(5):1231–8.
Amarante M. MM-OWA: a generalization of OWA operators. IEEE Trans Fuzzy Syst. 2017;26(4):2099–106.
Article MathSciNet Google Scholar
Geng X, Ma Y. n-intuitionistic polygonal fuzzy aggregation operators and their application to multi-attribute decision making. IEEE Access. 2020;8:162903–16.
Jin L. Some consistency properties and individual preference monotonicity for weighted aggregation operators. IEEE Trans Fuzzy Syst. 2021;30(6):2113–7.
Bustince H, Bedregal B, Campión MJ, da Silva I, Fernandez J, Induráin E, Raventós-Pujol A, Santiago RH. Aggregation of individual rankings through fusion functions: criticism and optimality analysis. IEEE Trans Fuzzy Syst. 2022;30(3):638–48.
Fieller EC, Hartley HO, Pearson ES. Tests for rank correlation coefficients. Biometrika. 1957;44(3/4):470–81.
Article MathSciNet Google Scholar
Liu TY. Learning to rank for information retrieval. Found Trends Inf Retriev. 2009;3(3):225–331.
Comments (0)