Štitilis D, Laurinaitis M, Verenius E. The use of biometric technologies in ensuring critical infrastructure security: the context of protecting personal data. Entrep Sustain Issues. 2023;10(3):133.
Ayeswarya S, Singh KJ. A comprehensive review on secure biometric-based continuous authentication and user profiling. IEEE Access. 2024.
Aftab A, Khan FA, Khan MK, Abbas H, Iqbal W, Riaz F. Hand-based multibiometric systems: state-of-the-art and future challenges. PeerJ Comput Sci. 2021;7:707.
Chowdhury AM, Khondkar MJA, Imtiaz MH. Advancements in synthetic generation of contactless palmprint biometrics using StyleGAN models. J Cybersecurity Priv. 2024;4(3):663–77.
Nadimpalli AV, Rattani A. Proactive deepfake detection using GAN-based visible watermarking. ACM Trans Multimed Comput Commun Appl. 2024;20(11):1–27.
Dharmawan DA, Nugroho AS. Towards deep face spoofing: taxonomy, recent advances, and open challenges. IEEE Trans Biom Behav Identity Sci. 2024.
Zhao C, Du H, Niyato D, Kang J, Xiong Z, Kim DI, Shen X, Letaief KB. Generative AI for secure physical layer communications: a survey. IEEE Trans Cogn Commun Network. 2024.
Alazwari S, Alsamri MOJ, Alamgeer M, Alabdan R, Alzahrani I, Rizwanullah M, Osman AE. Artificial rabbits optimization with transfer learning based deepfake detection model for biometric applications. Ain Shams Eng J. 2024:103057.
He Q, Peng C, Liu D, Wang N, Gao X. Gazeforensics: deepfake detection via gaze-guided spatial inconsistency learning. Neural Netw. 2024;180:106636.
Wu T, Leng L, Khan MK, Khan FA. Palmprint-palmvein fusion recognition based on deep hashing network. IEEE Access. 2021;9:135816–27.
Rancourt-Raymond A, Smaili N. The unethical use of deepfakes. J Financ Crime. 2023;30(4):1066–77.
Venema AE. Deepfake disinformation: how digital deception and synthetic media threaten national security. In: Routledge handbook of disinformation and national security, p. 175–191. Routledge; 2023.
Qureshi SM, Saeed A, Almotiri SH, Ahmad F, Al Ghamdi MA. Deepfake forensics: a survey of digital forensic methods for multimodal deepfake identification on social media. PeerJ Comput Sci. 2024;10:2037.
Zhang G, Gao M, Li Q, Zhai W, Jeon G. Multi-modal generative deepfake detection via visual-language pretraining with gate fusion for cognitive computation. Cogn Comput. 2024:1–14.
Singhal P, Walambe R, Ramanna S, Kotecha K. Domain adaptation: challenges, methods, datasets, and applications. IEEE Access. 2023;11:6973–7020.
Romero Moreno F. Generative AI and deepfakes: a human rights approach to tackling harmful content. Int Rev Law Comput Technol. 2024:1–30.
Montasari R. Responding to deepfake challenges in the United Kingdom: legal and technical insights with recommendations. In: Cyberspace. Cyberterrorism and the international security in the fourth industrial revolution: threats, assessment and responses. Cham: Springer; 2024. p. 241–58.
Busacca A, Monaca MA. Deepfake: creation, purpose, risks. In: Innovations and economic and social changes due to artificial intelligence: the state of the art, p. 55–68. Springer, Cham; 2023.
Zhang T. Deepfake generation and detection, a survey. Multimed Tools Appl. 2022;81(5):6259–76.
Mubarak R, Alsboui T, Alshaikh O, Inuwa-Dutse I, Khan S, Parkinson S. A survey on the detection and impacts of deepfakes in visual, audio, and textual formats. Ieee Access. 2023;11:144497–529.
Tolosana R, Vera-Rodriguez R, Fierrez J, Morales A, Ortega-Garcia J. Deepfakes and beyond: a survey of face manipulation and fake detection. Inf Fusion. 2020;64:131–48.
Wang T, Liao X, Chow KP, Lin X, Wang Y. Deepfake detection: a comprehensive survey from the reliability perspective. ACM Comput Surv. 2024;57(3):1–35.
Croitoru F-A, Hiji A-I, Hondru V, Ristea NC, Irofti P, Popescu M, Rusu C, Ionescu RT, Khan FS, Shah M. Deepfake media generation and detection in the generative AI era: a survey and outlook. 2024. arXiv:2411.19537
Pei G, Zhang J, Hu M, Zhai G, Wang C, Zhang Z, Yang J, Shen C, Tao D. Deepfake generation and detection: a benchmark and survey. 2024. arXiv:2403.17881
Gong LY, Li XJ. A contemporary survey on deepfake detection: datasets, algorithms, and challenges. Electronics. 2024;13(3):585.
Abbas F, Taeihagh A. Unmasking deepfakes: a systematic review of deepfake detection and generation techniques using artificial intelligence. Expert Syst Appl. 2024:124260.
Banerjee S, Yadav SK, Dhara A, Ajij M. A survey: deepfake and current technologies for solutions. 4 Sixth Doctoral Symposium on Intelligence Enabled Research (DoSIER 2024). 2025.
Babaei R, Cheng S, Duan R, Zhao S. Generative artificial intelligence and the evolving challenge of deepfake detection: a systematic analysis. J Sensor Actuator Netw. 2025;14(1):17.
Nguyen-Le H-H, Tran V-T, Nguyen D-T, Le-Khac N-A. Deepfake generation and proactive deepfake defense: a comprehensive survey. Authorea Preprints. 2024.
Almomani I, El-Shafai W, AlKhayer A, Alsumayt A, Aljameel S, Alissa K. Proposed biometric security system based on deep learning and chaos algorithms. Comput Mater Contin. 2023;74(2):3515–37.
Makrushin A, Uhl A, Dittmann J. A survey on synthetic biometrics: fingerprint, face, iris and vascular patterns. Ieee Access. 2023;11:33887–99.
Rao VS, Kasireddy S, Mishra A, Salini R, Godla SR, Bedair K. Unveiling spoofing attempts: a DCGAN-based approach to enhance face spoof detection in biometric authentication. Int J Adv Comput Sci Appl. 2024;15 4.
Tang W, Huang Z, Shen Q. Revealing real face for generalized anti-spoofing. In: International forum on digital TV and wireless multimedia communications, p. 227–244. Springer; 2023.
Galyashina E, Nikishin V. AI generated fake audio as a new threat to information security: legal and forensic aspects. In: Proceedings of the international scientific and practical conference on computer and information security, Yekaterinburg, Russia, p. 17–21. 2021.
Kheria I, Karani R. Cloneai: a deep learning-based approach for cloned voice detection. In: International conference on data science and applications, p. 267–282. Springer; 2023.
Mounnan O, Manad O, El Mouatasim A, Boubchir L, Daachi B. Deep speech recognition system based on autoencoder-GAN for biometric access control. Int J Adv Comput Sci Appl. 2023;14 11.
Kim JS, Lee YW, Hong JS, Kim SG, Batchuluun G, Park KR. LRFID-net: a local-region-based fake-iris detection network for fake iris images synthesized by a generative adversarial network. Mathematics. 2023;11(19):4160.
Yadav S, Ross A. Synthesizing iris images using generative adversarial networks: survey and comparative analysis. 2024. arXiv:2404.17105
Ghadekar P, Rajput K, Dhabekar H, Helge P, Mundhra H, Rathi C. Voice cloning and forgery detection using WaveGAN and SpecGAN. In: 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA), p. 1–6. IEEE; 2023.
Bamoriya P, Siddhad G, Kaur H, Khanna P, Ojha A. DSB-GAN: generation of deep learning based synthetic biometric data. Displays. 2022;74:102267.
Bond-Taylor S, Leach A, Long Y, Willcocks CG. Deep generative modelling: a comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models. IEEE Trans Pattern Anal Mach Intell. 2021;44(11):7327–47.
Kordas A, Bartuzi-Trokielewicz E, Ołowski M, Trokielewicz M. Synthetic iris images: a comparative analysis between cartesian and polar representation. Sensors. 2024;24(7):2269.
Rossler A, Cozzolino D, Verdel L, Riess C, Thies J, Nießner M. Faceforensics++: learning to detect manipulated facial images. IEEE Trans Pattern Anal Mach Intell. 2019;41(4):809–17.
Melzi P, Tolosana R, Vera-Rodriguez R, Kim M, Rathgeb C, Liu X, DeAndres-Tame I, Morales A, Fierrez J, Ortega-Garcia J, et al. FRCSyn-ongoing: benchmarking and comprehensive evaluation of real and synthetic data to improve face recognition systems. Inf Fusion. 2024;107:102322.
Boutros F, Struc V, Fierrez J, Damer N. Synthetic data for face recognition: current state and future prospects. Image Vis Comput. 2023;135:104688.
Junoh SA, Pyun J-Y. Enhancing indoor localization with semi-crowdsourced fingerprinting and GAN-based data augmentation. IEEE Internet Things J. 2023.
Shreya S, Chatterjee K. Gan-enable latent fingerprint enhancement model for human identification system. Multimed Tools Appl. 2024;83(9):27565–88.
Kaur N, Singh P. Conventional and contemporary approaches used in text to speech synthesis: a review. Artif Intell Rev. 2023;56(7):5837–80.
Chen Z, Rosenberg A, Zhang Y, Wang G, Ramabhadran B, Moreno PJ. Improving speech recognition using GAN-based speech synthesis and contrastive unspoken text selection. In: Interspeech, p. 556–560. 2020.
Doan TP, Hong K, Jung S. GAN discriminator based audio deepfake detection. In: Proceedings of the 2nd workshop on security implications of Deepfakes and Cheapfakes, p. 29–32. 2023.
Rožanec JM, Zajec P, Theodoropoulos S, Koehorst E, Fortuna B, Mladenić D. Synthetic data augmentation using GAN for improved automated visual inspection. Ifac-Papersonline. 2023;56(2):11094–9.
Ahmad Z, Jaffri ZuA, Chen M, Bao S. Understanding GANs: fundamentals, variants, training challenges, applications, and open problems. Multimed Tools Appl. 2024:1–77.
Nazabal A, Olmos PM, Ghahramani Z, Valera I. Handling incomplete heterogeneous data using VAEs. Pattern Recognit. 2020;107:107501.
Cheng K, Tahir R, Eric LK, Li M. An analysis of generative adversarial networks and variants for image synthesis on MNIST dataset. Multimed Tools Appl. 2020;79:13725–52.
Papadopoulos D, Karalis VD. Variational autoencoders for data augmentation in clinical studies. Appl Sci. 2023;13(15):8793.
Ye Y, Hao J, Hou Y, Wang Z, Xiao S, Luo Y, Zeng W. Generative AI for visualization: state of the art and future directions. Vis Inform. 2024.
Mangaokar N, Pu J, Bhattacharya P, Reddy CK, Viswanath B. Jekyll: attacking medical image diagnostics using deep generative models. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), p. 139–157. IEEE; 2020.
Bandi A, Adapa PVSR, Kuchi YEVPK. The power of generative AI: a review of requirements, models, input-output formats, evaluation metrics, and challenges. Future Internet. 2023;15(8):260.
Liu C, Chen H, Zhu T, Zhang J, Zhou W. Making deepfakes more spurious: evading deep face forgery detection via trace removal attack. IEEE Trans Dependable Sec Comput. 2023;20(6):5182–96.
Firc A, Malinka K, Hanacek P. Deepfakes as a threat to a speaker and facial recognition: an overview of tools and attack vectors. Heliyon. 2023;9(4):15090.
Afchar D, Nozick V, Yamagishi J, Echizen I. Mesonet: a compact facial video forgery detection network. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), p. 1–7. IEEE; 2018.
Agarwal S, Farid H, Nagano K, Li H. Protecting world leaders against deep fakes. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) workshops. 2019.
Li Y, Chang M-C, Lyu S. Celeb-DF: a new dataset for deepfake forensics. 2019. arXiv:1909.12962
Li Y, Chang M-C, Lyu S. Inictu oculi: exposing AI created fake videos by detecting eye blinking. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), p. 1–7. IEEE; 2018.
Yang Y, et al. Exposing AI created fake videos by detecting eye blinking. Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2019.
Altuncu E, Franqueira VN, Li S. Deepfake: definitions, performance metrics and standards, datasets, and a meta-review. Front Big Data. 2024;7:1400024.
Alam J, et al. Mel-spectrogram image-based end-to-end audio deepfake detection under channel-mismatched conditions. 2022 IEEE International Conference on Multimedia and Expo (ICME), p. 1–6. IEEE; 2022.
Wu Z, et al. Asvspoof 2019: automatic speaker verification spoofing and countermeasures challenge evaluation plan. 2016. arXiv:1609.05430
Sisman B, et al. An overview of voice conversion and its challenges: from statistical modeling to deep learning. IEEE/ACM Trans Audio Speech Lang Process. 2021;29:132–57.
Nguyen B, et al. NVC-Net: end-to-end adversarial voice conversion. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 7012–7016. IEEE; 2022.
Sharif M, Bhagavatula S, Bauer L, Reiter M. Adversarial generative nets: neural network attacks on state-of-the-art face recognition. 2017. arXiv:1708.08197
Seibold C, Samek W, Hilsmann A, Eisert P. Accurate and robust neural networks for face morphing attack detection. J Inf Sec Appl. 2020;53:102526.
Dolhansky B, et al. The deepfake detection challenge (DFDC) dataset. 2020. arXiv:2006.07397
Siarohin A, et al. Motion representations for articulated animation. Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), p. 10289–10297. 2021.
Heidari A, Jafari Navimipour N, Dag H, Unal M. Deepfake detection using deep learning methods: a systematic and comprehensive review. Wiley Interdiscip Rev Data Min Knowl Discov. 2024;14(2):1520.
Comments (0)