CBAM-XAI: Convolutional Block Attention Module Enhanced Explainable Artificial Intelligence-Based Parkinson’s Disease Stage Classification

James J, Kulkarni S, George N, Parsewar S, Shriram R, Bhat M. Detection of Parkinson’s disease through speech signatures. In proceedings of the third international conference on computational intelligence and informatics: ICCII 2018, Springer; 2020. pp. 619–626.

Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci. 2019;129(1):55–93.

Article  Google Scholar 

Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 2015;14(1):57–64.

Article  Google Scholar 

Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46(4):292–300.

Article  Google Scholar 

Ziemssen T, Reichmann H. Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(6):323–32.

Article  Google Scholar 

Sprenger F, Poewe W. Management of motor and non-motor symptoms in Parkinson’s disease. CNS Drugs. 2013;27:259–72.

Article  Google Scholar 

Vaswani PA, Wilkinson JR. Parkinson’s disease and other movement disorders. In geriatric medicine: a person centered evidence based approach: Springer, 2024: 1073–1096.

Bowling A, et al. Quality of life in dementia: a systematically conducted narrative review of dementia-specific measurement scales. Aging Ment Health. 2015;19(1):13–31.

Article  Google Scholar 

Pereira CR, Pereira DR, Weber SA, Hook C, De Albuquerque VHC, Papa JP. A survey on computer-assisted Parkinson’s disease diagnosis. Artif Intell Med. 2019;95:48–63.

Article  Google Scholar 

Kim HB, et al. Wrist sensor-based tremor severity quantification in Parkinson’s disease using convolutional neural network. Comput Biol Med. 2018;95:140–6.

Article  Google Scholar 

Niethammer M, Feigin A, Eidelberg D. Functional neuroimaging in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(5):a009274.

Article  Google Scholar 

Robichaud JA, Pfann KD, Leurgans S, Vaillancourt DE, Comella CL, Corcos DM. Variability of EMG patterns: a potential neurophysiological marker of Parkinson’s disease? Clin Neurophysiol. 2009;120(2):390–7.

Article  Google Scholar 

El Maachi I, Bilodeau G-A, Bouachir W. Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst Appl. 2020;143:113075.

Article  Google Scholar 

Sigcha L, et al. Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson’s disease: a systematic review. Expert Syst Appl. 2023;229:120541.

Article  Google Scholar 

Zhao A, Qi L, Li J, Dong J, Yu H. A hybrid spatio-temporal model for detection and severity rating of Parkinson’s disease from gait data. Neurocomputing. 2018;315:1–8.

Article  Google Scholar 

Tăuţan A-M, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: a review of available tools with a focus on machine learning techniques. Artif Intell Med. 2021;117:102081.

Article  Google Scholar 

Wang C, Evans K, Hartley D, Morrison S, Veidt M, Wang G. A systematic review of artificial neural network techniques for analysis of foot plantar pressure. Biocybern Biomed Eng. 2024;44(1):197–208.

Article  Google Scholar 

Keserwani PK, Das S, Sarkar N. A comparative study: prediction of parkinson’s disease using machine learning, deep learning and nature inspired algorithm. Multimed Tools Appl. 2024;83(27):69393–441.

Article  Google Scholar 

Aggarwal N, Saini B, Gupta S. Role of artificial intelligence techniques and neuroimaging modalities in detection of Parkinson’s disease: a systematic review. Cogn Comput. 2024;16(4):2078–115.

Article  Google Scholar 

Altham C, Zhang H, Pereira E. Machine learning for the detection and diagnosis of cognitive impairment in Parkinson’s disease: a systematic review. PLoS ONE. 2024;19(5):e0303644.

Article  Google Scholar 

Amadı AO, Onyibe CO, Madu HC, Aja OA, Okpo NC. Revolutionizing biomedical imaging: exploring the integration of deep learning and AI-driven techniques for enhanced diagnostic accuracy and precision in medical imaging. J Inventive Eng Technol (JIET). 2024;6(2):1–10.

Google Scholar 

Litjens G, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

Article  Google Scholar 

Latif J, Xiao C, Imran A, Tu S. Medical imaging using machine learning and deep learning algorithms: a review. In 2019 2nd international conference on computing, mathematics and engineering technologies (iCoMET), IEEE; 2019. pp. 1–5.

Subba AB, Sunaniya AK. Computationally optimized brain tumor classification using attention based GoogLeNet-style CNN. Expert Syst Appl. 2025;260:125443.

Article  Google Scholar 

Wang Q, Zeng W, Dai X. Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods. Cogn Neurodyn. 2024;18(1):109–32.

Article  Google Scholar 

Ali L, Javeed A, Noor A, Rauf HT, Kadry S, Gandomi AH. Parkinson’s disease detection based on features refinement through L1 regularized SVM and deep neural network. Sci Rep. 2024;14(1):1333.

Article  Google Scholar 

Kumar K, Ghosh R. Parkinson’s disease diagnosis using recurrent neural network based deep learning model by analyzing online handwriting. Multimed Tools Appl. 2024;83(4):11687–715.

Article  Google Scholar 

Sun H, Ye Q, Xia Y. Predicting freezing of gait in patients with Parkinson’s disease by combination of manually-selected and deep learning features. Biomed Signal Process Control. 2024;88:105639.

Article  Google Scholar 

Binish M, Raj RS, Thomas V. Brain tumor classification using multi-resolution averaged spatial attention features with CBAM and convolutional neural networks. In 2024 1st international conference on trends in engineering systems and technologies (ICTEST), IEEE; 2024. pp. 1–7.

Majhi B, et al. An improved method for diagnosis of Parkinson’s disease using deep learning models enhanced with metaheuristic algorithm. BMC Med Imaging. 2024;24(1):156.

Article  Google Scholar 

Dehghan R, Naderan M, Alavi SE. Combining convolutional neural network (CNN) and Grad-CAM for Parkinson’s disease prediction and visual explanation. Eng Manage Soft Comp. 2024;10(1):1–13.

Google Scholar 

Pedrero-Sánchez JF, Belda-Lois JM, Serra-Añó P, Mollà-Casanova S, López-Pascual J. Classification of Parkinson’s disease stages with a two-stage deep neural network. Front Aging Neurosci. 2023;15:1152917.

Article  Google Scholar 

Shcherbak A, Kovalenko E, Somov A. Detection and classification of early stages of Parkinson’s disease through wearable sensors and machine learning. IEEE Trans Instrum Meas. 2023;72:1–9.

Article  Google Scholar 

Mondol SR, Kim R, Lee S. Hybrid machine learning framework for multistage Parkinson’s disease classification using acoustic features of sustained korean vowels. Bioengineering. 2023;10(8):984.

Article  Google Scholar 

Li K, Ao B, Wu X, Wen Q, Ul Haq E, Yin J. Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model. Biotechnol Genet Eng Rev. 2024;40(3):2577–96.

Article  Google Scholar 

Sivaranjini S, Sujatha C. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed Tools Appl. 2020;79(21):15467–79.

Article  Google Scholar 

Wodzinski M, Skalski A, Hemmerling D, Orozco-Arroyave JR, Nöth E. Deep learning approach to Parkinson’s disease detection using voice recordings and convolutional neural network dedicated to image classification. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE; 2019. pp. 717–720.

Wang W, Lee J, Harrou F, Sun Y. Early detection of Parkinson’s disease using deep learning and machine learning. IEEE Access. 2020;8:147635–46.

Article  Google Scholar 

Habib Z, Mughal MA, Khan MA, Hamza A, Alturki N, Jamel L. A novel deep dual self-attention and Bi-LSTM fusion framework for Parkinson’s disease prediction using freezing of gait: a biometric application. Multimed Tools Appl. 2024;83(33):80179–200.

Article  Google Scholar 

Mansour RF. Quantum mayfly optimization based feature subset selection with hybrid CNN for biomedical Parkinson’s disease diagnosis. Neural Comput Appl. 2024;36(15):8383–96.

Article  Google Scholar 

Sangeetha S, Umarani B. MRI image-based Parkinson’s disease classification using Deep Maxout fuzzy EfficientNet. Biomed Signal Process Control. 2025;103:107416.

Article  Google Scholar 

Ahalya R, Nkondo GF, Snekhalatha U. Automated detection of Parkinson’s disease based on hybrid CNN and quantum machine learning techniques in MRI images. Biomed Eng - Appl Basis Commun. 2024;36(02):2450005.

Article  Google Scholar 

Desai S, Chhinkaniwala H, Shah S, Gajjar P. Enhancing Parkinson’s disease diagnosis through deep learning-based classification of 3D MRI images. Procedia Comp Sci. 2024;235:201–13.

Article  Google Scholar 

Navita, et al. Gait-based Parkinson’s disease diagnosis and severity classification using force sensors and machine learning. Sci Rep. 2025;15(1):328.

Article  Google Scholar 

Malekroodi HS, Madusanka N, Lee B-I, Yi M. Leveraging deep learning for fine-grained categorization of Parkinson’s disease progression levels through analysis of vocal acoustic patterns. Bioengineering. 2024;11(3):295.

Article  Google Scholar 

He T, Chen J, Chen Y. Smartphone-based detection of early Parkinson’s disease with tapping records and a multimodal-multiscale ensemble network. IEEE Sensors J. 2024. https://doi.org/10.1109/JSEN.2024.3452092.

Article  Google Scholar 

Chinnathambi D, Ravi S, Dhanasekaran H, Dhandapani V, Rao R, Pandiaraj S. Early detection of Parkinson’s disease using deep learning: a convolutional bi-directional GRU approach. In intelligent technologies and parkinson’s disease: prediction and diagnosis: IGI Global, 2024, pp. 228–240.

He T, Chen J, Xu X, Fortino G, Wang W. Early detection of Parkinson’s disease using deep NeuroEnhanceNet with smartphone walking recordings. IEEE Trans Neural Syst Rehabil Eng. 2024. https://doi.org/10.1109/TNSRE.2024.3462392.

Article  Google Scholar 

Kanagaraj S, Hema M, Guptha MN. An improved approach for early diagnosis of Parkinson’s disease using advanced DL models and image alignment. Automatika. 2024;65(3):911–24.

Comments (0)

No login
gif