Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, Drazner MH, Felker M, Filippatos G, Fiuzat G, Fonarow M, Gomez-Mesa GC, Heidenreich JE, Imamura P, Jankowska T, Januzzi EA, Zieroth J, S. Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure: endorsed by the Canadian heart failure society, heart failure association of India, cardiac society of Australia and new Zealand, and Chinese heart failure association. Eur J Heart Fail. 2021;23(3):352–80. https://doi.org/10.1002/ejhf.2115.
Hao G, Wang X, Chen Z, Zhang L, Zhang Y, Wei B, Zheng C, Kang Y, Jiang L, Zhu Z, Zhang J, Wang Z, Gao R, China Hypertension Survey Investigators. Prevalence of heart failure and left ventricular dysfunction in China: the China hypertension survey, 2012–2015. Eur J Heart Fail. 2019;21(11):1329–37. https://doi.org/10.1002/ejhf.1629.
Nair N. Epidemiology and pathogenesis of heart failure with preserved ejection fraction. Rev Cardiovasc Med. 2020;21(4):531–40. https://doi.org/10.31083/j.rcm.2020.04.154.
Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, Younis A, Dai H. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021;28(15):1682–90. https://doi.org/10.1093/eurjpc/zwaa147.
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and. Lancet (London England). 2018;392(10159):1789–858. https://doi.org/10.1016/S0140-6736(18)32279-7. injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017.
Lu J, Holmgren A. Selenoproteins J Biol Chem. 2009;284(2):723–7. https://doi.org/10.1074/jbc.R800045200.
Article PubMed CAS Google Scholar
Rocca C, Pasqua T, Boukhzar L, Anouar Y, Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on Endoplasmic reticulum-resident selenoproteins. Cell Mol Life Sci. 2019;76(20):3969–85. https://doi.org/10.1007/s00018-019-03195-1.
Article PubMed PubMed Central CAS Google Scholar
Benstoem C, Goetzenich A, Kraemer S, Borosch S, Manzanares W, Hardy G, Stoppe C. Selenium and its supplementation in cardiovascular disease–what do we know? Nutrients. 2015;7(5):3094–118. https://doi.org/10.3390/nu7053094.
Article PubMed PubMed Central CAS Google Scholar
Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. J Neurochem. 2003;86(1):1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x.
Article PubMed CAS Google Scholar
Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN. Characterization of mammalian selenoproteomes. Science (New York, N.Y.). 2003;300(5624):1439–43. https://doi.org/10.1126/science.1083516.
Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and Selenoprotein function in brain disorders. IUBMB Life. 2014;66(4):229–39. https://doi.org/10.1002/iub.1262.
Article PubMed CAS Google Scholar
Meng XL, Chen CL, Liu YY, Su SJ, Gou JM, Huan FN, Wang D, Liu HS, Ben SB, Lu J. Selenoprotein SELENOK enhances the migration and phagocytosis of microglial cells by increasing the cytosolic free Ca2 + Level resulted from the Up-Regulation of IP3R. Neuroscience. 2019;406:38–49. https://doi.org/10.1016/j.neuroscience.2019.02.029.
Article PubMed CAS Google Scholar
Rose AH, Hoffmann PR. Selenoproteins and cardiovascular stress. Thromb Haemost. 2015;113(3):494–504. https://doi.org/10.1160/TH14-07-0603.
Atkins JF, Gesteland RF. The twenty-first amino acid. Nature. 2000;407(6803):463–5. https://doi.org/10.1038/35035189.
Article PubMed CAS Google Scholar
Michalke B. Molecular and integrative toxicology – selenium. Springer. 2018;Chapters:1(11):5–9.
Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. https://doi.org/10.1046/j.1432-1327.2000.01701.x.
Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta. 2008;1780(11):1368–82. https://doi.org/10.1016/j.bbagen.2007.12.008.
Article PubMed CAS Google Scholar
Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc Natl Acad Sci USA. 2005;102(42):15018–23. https://doi.org/10.1073/pnas.0504218102.
Article PubMed PubMed Central CAS Google Scholar
Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun. 2010;396(1):120–4. https://doi.org/10.1016/j.bbrc.2010.03.083.
Article PubMed CAS Google Scholar
Tamura T, Stadtman TC. A new Selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA. 1996;93(3):1006–11. https://doi.org/10.1073/pnas.93.3.1006.
Article PubMed PubMed Central CAS Google Scholar
Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem. 1999;274(8):4722–34. https://doi.org/10.1074/jbc.274.8.4722.
Article PubMed CAS Google Scholar
Sun QA, Kirnarsky L, Sherman S, Gladyshev VN. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA. 2001;98(7):3673–8. https://doi.org/10.1073/pnas.051454398.
Article PubMed PubMed Central CAS Google Scholar
Al-Mubarak AA, van der Meer P, Bomer N. Selenium, selenoproteins, and heart failure: current knowledge and future perspective. Curr Heart Fail Rep. 2021;18(3):122–31. https://doi.org/10.1007/s11897-021-00511-4.
Article PubMed PubMed Central CAS Google Scholar
Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochim Biophys Acta. 2009;1790(9):886–91. https://doi.org/10.1016/j.bbagen.2009.02.008.
Article PubMed CAS Google Scholar
Russell-Hallinan A, Watson CJ, Baugh JA. Epigenetics of aberrant cardiac wound healing. Compr Physiol. 2018;8(2):451–91. https://doi.org/10.1002/cphy.c170029.
Hua W, Yanchun L. Chinese heart failure diagnosis and treatment guidelines 2018. Chin J Cardiol. 2018;2(4):30(in Chinese).
Heart Failure Group of Chinese Society of Cardiology of Chinese Medical Association, Chinese Heart Failure Association of Chinese Medical Doctor Association, & Editorial Board of Chinese Journal of Cardiology. Zhonghua Xin Xue Guan Bing Za Zhi. 2018;46(10):760–89. https://doi.org/10.3760/cma.j.issn.0253-3758.2018.10.004
Arnér ES. Focus on mammalian thioredoxin reductases–important selenoproteins with versatile functions. Biochim Biophys Acta. 2009;1790(6):495–526. https://doi.org/10.1016/j.bbagen.2009.01.014.
Article PubMed CAS Google Scholar
Edvardsen H, Landmark-Høyvik H, Reinertsen KV, Zhao X, Grenaker-Alnæs GI, Nebdal D, Syvänen AC, Rødningen O, Alsner J, Overgaard J, Borresen-Dale AL, Fosså SD, Kristensen VN. SNP in TXNRD2 associated with radiation-induced fibrosis: a study of genetic variation in reactive oxygen species metabolism and signaling. Int J Radiat Oncol Biol Phys. 2013;86(4):791–9. https://doi.org/10.1016/j.ijrobp.2013.02.025.
Article PubMed CAS Google Scholar
Kariž S, Nikolajević Starčević J, Petrovič D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with myocardial infarction in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;98(1):144–50. https://doi.org/10.1016/j.diabres.2012.07.003.
Article PubMed CAS Google Scholar
Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330–41. https://doi.org/10.1016/j.orcp.2013.05.004.
Comments (0)