Development of F-Labeled Deuterated Tropane Derivatives with High Metabolic Stability for PET Imaging of the Dopamine Transporter

Hayes MT (2019) Parkinson’s Disease and Parkinsonism. Am J Med 132(7):802–807

Article  PubMed  Google Scholar 

Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124(8):901–905

Article  PubMed  Google Scholar 

Rajput AH, Rajput A (2014) Accuracy of Parkinson disease diagnosis unchanged in 2 decades. Neurology 83(5):386–387

Article  PubMed  Google Scholar 

Palermo G, Ceravolo R (2019) Molecular imaging of the dopamine transporter. Cells 8(8):872

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cumming P, Maschauer S, Riss PJ et al (2014) Radiosynthesis and validation of 1⁸F-FP-CMT, a phenyltropane with superior properties for imaging the dopamine transporter in living brain. J Cereb Blood Flow Metab 34(7):1148–1156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stehouwer JS, Goodman MM (2009) Fluorine-18 radiolabeled pet tracers for imaging monoamine transporters: dopamine, serotonin, and norepinephrine. PET Clin 4(1):101–128

Article  PubMed  PubMed Central  Google Scholar 

Nicastro N, Nencha U, Burkhard PR, Garibotto V (2023) Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. J Neurochem 164(3):346–363

Article  CAS  PubMed  Google Scholar 

Pimlott SL, Sutherland A (2011) Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev 40(1):149–162

Article  CAS  PubMed  Google Scholar 

Appel L, Jonasson M, Danfors T et al (2015) Use of [11C]PE2I PET in differential diagnosis of parkinsonian disorders. J Nucl Med 56(2):234–242

Article  PubMed  Google Scholar 

Chalon S, Vercouillie J, Payoux P et al (2019) The story of the dopamine transporter PET Tracer LBT-999: from conception to clinical Use. Front Med (Lausanne) 6:90

Article  PubMed  Google Scholar 

Nurmi E, Bergman J, Eskola O et al (2000) Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18F]CFT PET study. J Cereb Blood Flow Metab 20(11):1604–1609

Article  CAS  PubMed  Google Scholar 

Goodman MM, Kilts CD, Keil R et al (2000) 18F-labeled FECNT: a selective radioligand for PET imaging of brain dopamine transporters. Nucl Med Biol 27(1):1–12

Article  CAS  PubMed  Google Scholar 

Shin KH, Park SA, Kim SY, Lee SJ, Oh SJ, Kim JS (2012) Effect of animal condition and fluvoxamine on the result of [18F]N-3-Fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) Nortropane ([18F]FP-CIT) PET study in mice. Nucl Med Mol Imaging 46:27–33

Article  CAS  PubMed  Google Scholar 

Bergström KA, Halldin C, Hall H et al (1997) In vitro and in vivo characterisation of nor-beta-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain. Eur J Nucl Med 24(6):596–601

Article  PubMed  Google Scholar 

Giron MC, Portolan S, Bin A, Mazzi U, Cutler CS (2008) Cytochrome P450 and radiopharmaceutical metabolism. Q J Nucl Med Mol Imaging 52(3):254–266

CAS  PubMed  Google Scholar 

Guengerich FP (2007) Mechanisms of cytochrome P450 substrate oxidation: minireview. J Biochem Mol Toxicol 21(4):163–168

Article  CAS  PubMed  Google Scholar 

Di Martino RMC, Maxwell BD, Pirali T (2023) Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov 22(7):562–584

Article  PubMed  Google Scholar 

Gant TG (2014) Using deuterium in drug discovery: leaving the label in the drug. J Med Chem 57(9):3595–3611

Article  CAS  PubMed  Google Scholar 

Gündel D, Deuther-Conrad W, Ueberham L et al (2022) Structure-based design, optimization, and development of [18F]LU13: a novel radioligand for cannabinoid receptor type 2 Imaging in the brain with PET. J Med Chem 65(13):9034–9049

Article  PubMed  Google Scholar 

Xiao H, Choi SR, Zhao R et al (2021) A new highly deuterated [18F]AV-45, [18F]D15FSP, for Imaging β-amyloid plaques in the brain. ACS Med Chem Lett 12:1086–1092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao S, Tang J, Liu C et al (2021) Synthesis and biological evaluation of [18F]FECNT-d4 as a Novel PET agent for dopamine transporter imaging. Mol Imaging Biol 23:733–744

Article  CAS  PubMed  Google Scholar 

Li Q, Hu Q, Tang J et al (2023) Deuterated [18F]fluoroethyl tropane analogs as dopamine transporter probes: synthesis and biological evaluation. Nucl Med Biol 118–119:108334

Article  PubMed  Google Scholar 

Hu Q, Li Q, Tang J et al (2023) Synthesis and biological evaluation of 18F-labelled deuterated tropane derivatives as dopamine transporter probes. Arab J Chem 16:105278

Article  CAS  Google Scholar 

Liu J, Kang J, Qi M et al (2024) Synthesis and initial evaluation of radioiodine-labelled deuterated tropane derivatives targeting dopamine transporter. Bioorg Med Chem Lett 102:129678

Article  CAS  PubMed  Google Scholar 

Gupta V, Ranjan R, Verma R, Belho ES, Malik D, Mahajan H (2019) Correlation of 99mTc-TRODAT-1 SPECT imaging findings and clinical staging of Parkinson Disease. Clin Nucl Med 44(5):347–350

Article  PubMed  Google Scholar 

Truong L, Allbutt H, Kassiou M, Henderson JM (2006) Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 169(1):1–9

Article  CAS  PubMed  Google Scholar 

Tang J, Xu Y, Liu C et al (2020) PET imaging with [18F]FP-(+)-DTBZ in 6-OHDA-induced partial and full unilaterally-lesioned model rats of Parkinson’s disease and the correlations to the biological data. Nucl Med Biol 90–91:1–9

Article  PubMed  Google Scholar 

Meegalla SK, Plössl K, Kung MP et al (1997) Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J Med Chem 40(1):9–17

Article  CAS  PubMed  Google Scholar 

Galinelli NC, Bamford NJ, de Laat MA, Sillence MN, Harris PA, Bailey SR (2024) Evidence for dopamine production and distribution of dopamine D2 receptors in the equine gastrointestinal mucosa and pancreas. PLoS ONE 19(2):e0298660

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freyberg Z, Gittes GK (2023) Roles of pancreatic islet catecholamine neurotransmitters in glycemic control and in antipsychotic drug-induced dysglycemia. Diabetes 72(1):3–15

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif