Peitzsch C, Kurth I, Kunz-Schughart L et al (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108:378–387. https://doi.org/10.1016/j.radonc.2013.06.003
Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. https://doi.org/10.1186/1476-4598-5-67
Article CAS PubMed PubMed Central Google Scholar
Pallini R, Ricci-Vitiani L, Banna GL et al (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212. https://doi.org/10.1158/1078-0432.CCR-08-0644
Article CAS PubMed Google Scholar
Brugnoli F, Grassilli S, Al-Qassab Y et al (2019) CD133 in breast cancer cells: more than a stem cell marker. J Oncol 2019:1–8. https://doi.org/10.1155/2019/7512632
Suetsugu A, Nagaki M, Aoki H et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351:820–824. https://doi.org/10.1016/j.bbrc.2006.10.128
Article CAS PubMed Google Scholar
Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102:1276–1283. https://doi.org/10.1038/sj.bjc.6605626
Article CAS PubMed PubMed Central Google Scholar
Kalantari E, Asgari M, Nikpanah S et al (2017) Co-expression of putative cancer stem cell markers CD44 and CD133 in prostate carcinomas. Pathol Oncol Res 23:793–802. https://doi.org/10.1007/s12253-016-0169-z
Article CAS PubMed Google Scholar
Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828
Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257
Article CAS PubMed PubMed Central Google Scholar
Bertolini G, Roz L, Perego P et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A 106:16281–16286. https://doi.org/10.1073/pnas.0905653106
Article PubMed PubMed Central Google Scholar
Bhatia M (2001) AC133 expression in human stem cells. Leukemia 15:1685–1688. https://doi.org/10.1038/sj.leu.2402255
Article CAS PubMed Google Scholar
Stratford EW, Bostad M, Castro R, et al (2013) Photochemical internalization of CD133-targeting immunotoxins efficiently depletes sarcoma cells with stem-like properties and reduces tumorigenicity. Biochimica et Biophysica Acta (BBA) - General Subjects 1830:4235–4243. https://doi.org/10.1016/j.bbagen.2013.04.033
Sarrett SM, Rodriguez C, Delaney S, Hosny MM, Sebastiano J, Santos-Coquillat A, Keinänen OM, Carter LM, Lastwika KJ, Lampe PD, Zeglis BM. Evaluating CD133 as a radiotheranostic target in small-cell lung cancer. Molecular Pharmaceutics. 2024 Feb 8;21(3):1402-13. https://doi.org/10.1021/acs.molpharmaceut.3c01063
Dinghu W, Xueyan J, Saimei Q, et al (2017) Radioimmunotherapy for CD133(+) colonic cancer stem cells inhibits tumor development in nude mice. Oncotarget 8:44004–44014. https://doi.org/10.18632/oncotarget.16868
Ohlfest JR, Zellmer DM, Panyam J et al (2013) Immunotoxin targeting CD133(+) breast carcinoma cells. Drug Deliv Transl Res 3:195–204. https://doi.org/10.1007/s13346-012-0066-2
Article CAS PubMed Google Scholar
Bueno C, Velasco-Hernandez T, Gutiérrez-Agüera F et al (2019) CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity. Leukemia 33:2090–2125. https://doi.org/10.1038/s41375-019-0418-8
Article PubMed PubMed Central Google Scholar
Frödin J-E, Lefvert A-K, Mellstedt H (1992) The clinical significance of HAMA in patients treated with mouse monoclonal antibodies. Cell Biophys 21:153–165. https://doi.org/10.1007/BF02789485
Gonzales NR, Pascalis RD, Schlom J, Kashmiri SVS (2005) Minimizing the immunogenicity of antibodies for clinical application. TBI 26:31–43. https://doi.org/10.1159/000084184
Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2:256–265. https://doi.org/10.4161/mabs.2.3.11641
Article PubMed PubMed Central Google Scholar
Williams R (2013) Generation of anti-CD133 human synthetic antibodies as tools for exploring CD133 function. Thesis, University of Toronto. https://utoronto.scholaris.ca/items/629b4137-29af-40ba-94ea-f2724ab07ec1
Vora P, Venugopal C, Salim SK et al (2020) The rational development of CD133-targeting immunotherapies for glioblastoma. Cell Stem Cell 26:832-844.e6. https://doi.org/10.1016/j.stem.2020.04.008
Article CAS PubMed Google Scholar
Wyszatko K, Silva LR, Komal T, Kwon LY, Ventura M, Singh S, Valliant J, Sadeghi S (2022) Preclinical development of CD133 targeted immunoPET probes. Nuclear Medic Biol 1(114):S19-20
Vora P, Chokshi C, Qazi M et al (2016) Abstract B079: The efficacy of CD133 BiTEs and CAR-T cells in preclinical model of recurrent glioblastoma. Cancer Immunol Res 4:B079–B079. https://doi.org/10.1158/2326-6066.IMM2016-B079
Corbeil D (2013) Prominin-1 (CD133): New insights on stem & cancer stem cell biology. Springer, New York, New York, NY
Bilinski P, Webb M (2020) An exceptional response to 177LuPSMA undermined by neuroendocrine transformation. Urol Case Rep 34:101467. https://doi.org/10.1016/j.eucr.2020.101467
Article PubMed PubMed Central Google Scholar
Calopedos RJS, Chalasani V, Asher R et al (2017) Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 20:352–360. https://doi.org/10.1038/pcan.2017.23
Article CAS PubMed Google Scholar
Weng D, Jin X, Qin S, Lan X, Chen C, Sun X, She X, Dong C, An R. Radioimmunotherapy for CD133 (+) colonic cancer stem cells inhibits tumor development in nude mice. Oncotarget. 2017 Apr 6;8(27):44004. https://doi.org/10.18632/oncotarget.16868
Chen Y-W, Liou G-G, Pan H-B et al (2015) Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Int J Nanomedicine 10:6997–7018. https://doi.org/10.2147/IJN.S86592
Article CAS PubMed PubMed Central Google Scholar
Delbart W, Ghanem GE, Karfis I et al (2021) Investigating intrinsic radiosensitivity biomarkers to peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE in a panel of cancer cell lines. Nucl Med Biol 96–97:68–79. https://doi.org/10.1016/j.nucmedbio.2021.03.006
Article CAS PubMed Google Scholar
Lee JY, Kim M-S, Kim EH et al (2016) Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models. Lab Anim Res 32:187–193. https://doi.org/10.5625/lar.2016.32.4.187
Article PubMed PubMed Central Google Scholar
Maisonial-Besset A, Witkowski T, Navarro-Teulon I, Berthier-Vergnes O, Fois G, Zhu Y, Besse S, Bawa O, Briat A, Quintana M, Pichard A (2017) Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget. 8(13):22034
Article PubMed PubMed Central Google Scholar
Greiner JW, Ullmann CD, Nieroda C et al (1993) Improved radioimmunotherapeutic efficacy of an anticarcinoma monoclonal antibody (131I-CC49) when given in combination with gamma-interferon. Cancer Res 53:600–608
Schlom J, Siler K, Milenic DE et al (1991) Monoclonal antibody-based therapy of a human tumor xenograft with a 177lutetium-labeled immunoconjugate. Cancer Res 51:2889–2896
Liu Z, Ma T, Liu H et al (2014) 177 Lu-labeled antibodies for EGFR-Targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharmaceutics 11:800–807. https://doi.org/10.1021/mp4005047
Comments (0)