Fazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, Puthucheary Z, Wackerhage H (2023) The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care 27:2
Article PubMed PubMed Central Google Scholar
Sidiras G, Patsaki I, Karatzanos E, Dakoutrou M, Kouvarakos A, Mitsiou G, Routsi C, Stranjalis G, Nanas S, Gerovasili V (2019) Long term follow-up of quality of life and functional ability in patients with ICU acquired weakness—a post hoc analysis. J Crit Care 53:223–230
Stapel SN, Looijaard WGPM, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM (2018) Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr 72:1019–1025
Article PubMed PubMed Central Google Scholar
Weijs PJM, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, Straaten HMO-V, Beishuizen A (2014) Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 18:R12
Article PubMed PubMed Central Google Scholar
Lopez-Ruiz A, Kashani K (2020) Assessment of muscle mass in critically ill patients: role of the sarcopenia index and images studies. Curr Opin Clin Nutr Metab Care 23:302–311
Moonen H, Van Zanten ARH (2021) Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr Opin Crit Care 27:344–353
Article PubMed PubMed Central Google Scholar
van Ruijven IM, Stapel SN, Molinger J, Weijs PJM (2021) Monitoring muscle mass using ultrasound: a key role in critical care. Curr Opin Crit Care 27:354
Lima J, Foletto E, Cardoso RCB, Garbelotto C, Frenzel AP, Carneiro JU, Carpes LS, Barbosa-Silva TG, Gonzalez MC, Silva FM (2024) Ultrasound for measurement of skeletal muscle mass quantity and muscle composition/architecture in critically ill patients: a scoping review on studies’ aims, methods, and findings. Clin Nutr 43:95–110
Baldwin CE, Bersten AD (2014) Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther 94:68–82
Jung B, Nougaret S, Conseil M, Coisel Y, Futier E, Chanques G, Molinari N, Lacampagne A, Matecki S, Jaber S (2014) Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology 120:1182–1191
Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, Albaladejo P, Chanques G, Molinari N, Jaber S (2016) Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 42:853–861
Batt J, Mathur S, Katzberg HD (2017) Mechanism of ICU-acquired weakness: muscle contractility in critical illness. Intensive Care Med 43:584–586
Wang W, Xu C, Ma X, Zhang X, Xie P (2020) Intensive care unit-acquired weakness: a review of recent progress with a look toward the future. Front Med 7:559789
Cacciani N, Skarlen A, Wen Y, Zhang X, Addinsall AB, Llano-Diez M, Li M, Gransberg L, Hedstrom Y, Bellander BM, Nelson D, Bergquist J, Larsson L (2022) A prospective clinical study on the mechanisms underlying critical illness myopathy—a time-course approach. J Cachexia Sarcopenia Muscle 13:2669–2682
Article PubMed PubMed Central Google Scholar
Claassen WJ, Baelde RJ, Galli RA, de Winter JM, Ottenheijm CAC (2023) Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am J Physiol Cell Physiol 325:C60–C68
Article CAS PubMed PubMed Central Google Scholar
Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, de Boo T, Dekhuijzen PN (2005) Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:200–205
Article PubMed PubMed Central Google Scholar
Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17:248–253
Article CAS PubMed Google Scholar
Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600
Article CAS PubMed Google Scholar
Bottinelli R, Narici M, Pellegrino MA, Kayser B, Canepari M, Faglia G, Sartorio A (1997) Contractile properties and fiber type distribution of quadriceps muscles in adults with childhood-onset growth hormone deficiency. J Clin Endocrinol Metab 82:4133–4138
Article CAS PubMed Google Scholar
Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199
Article CAS PubMed Google Scholar
van den Berg M, Shi Z, Claassen WJ, Hooijman P, Lewis CTA, Andersen JL, van der Pijl RJ, Bogaards SJP, Conijn S, Peters EL, Begthel LPL, Uijterwijk B, Lindqvist J, Langlais PR, Girbes ARJ, Stapel S, Granzier H, Campbell KS, Ma W, Irving T, Hwee DT, Hartman JJ, Malik FI, Paul M, Beishuizen A, Ochala J, Heunks L, Ottenheijm CAC (2024) Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients. Sci Transl Med 16:eadg3894
Article PubMed PubMed Central Google Scholar
MacIntosh BR (2003) Role of calcium sensitivity modulation in skeletal muscle performance. Physiology 18:222–225
Vikne H, Strom V, Pripp AH, Gjovaag T (2020) Human skeletal muscle fiber type percentage and area after reduced muscle use: a systematic review and meta-analysis. Scand J Med Sci Sports 30:1298–1317
Horwath O, Envall H, Roja J, Emanuelsson EB, Sanz G, Ekblom B, Apro W, Moberg M (1985) (2021) Variability in vastus lateralis fiber type distribution, fiber size, and myonuclear content along and between the legs. J Appl Physiol 131:158–173
Shi Z, van den Berg M, Bogaards S, Conijn S, Paul M, Beishuizen A, Heunks L, Ottenheijm CAC (2023) Replacement fibrosis in the diaphragm of mechanically ventilated critically ill patients. Am J Respir Crit Care Med 207:351–354
Zhang W, Wu J, Gu Q, Gu Y, Zhao Y, Ge X, Sun X, Lian J, Zeng Q (2021) Changes in muscle ultrasound for the diagnosis of intensive care unit acquired weakness in critically ill patients. Sci Rep 11:18280
Article CAS PubMed PubMed Central Google Scholar
Kim D, Sun JS, Lee YH, Lee JH, Hong J, Lee JM (2019) Comparative assessment of skeletal muscle mass using computerized tomography and bioelectrical impedance analysis in critically ill patients. Clin Nutr 38:2747–2755
Looijaard W, Stapel SN, Dekker IM, Rusticus H, Remmelzwaal S, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM (2020) Identifying critically ill patients with low muscle mass: agreement between bioelectrical impedance analysis and computed tomography. Clin Nutr 39:1809–1817
Lambell KJ, Earthman CP, Tierney AC, Goh GS, Forsyth A, King SJ (2021) How does muscularity assessed by bedside methods compare to computed tomography muscle area at intensive care unit admission? A pilot prospective cross-sectional study. J Hum Nutr Diet 34:345–355
Article CAS PubMed Google Scholar
Schefold JC, Bierbrauer J, Weber-Carstens S (2010) Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 1:147–157
Comments (0)