Explainable machine learning models for mortality prediction in patients with sepsis in tertiary care hospital ICU in low- to middle-income countries

Pieroni M, Olier I, Ortega-Martorell S, Johnston BW, Welters ID (2022) In-hospital mortality of sepsis differs depending on the origin of infection: an investigation of predisposing factors. Front Med. https://doi.org/10.3389/fmed.2022.915224

Article  Google Scholar 

Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, Jernigan JA, Martin GS, Septimus E, Warren DK, Karcz A, Chan C, Menchaca JT, Wang R, Gruber S, Klompas M (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA 318:1241–1249. https://doi.org/10.1001/JAMA.2017.13836

Article  PubMed  PubMed Central  Google Scholar 

Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

Article  PubMed  PubMed Central  Google Scholar 

Gaieski DF, Edwards JM, Kallan MJ, Carr BG (2013) Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 41:1167–1174. https://doi.org/10.1097/CCM.0B013E31827C09F8

Article  PubMed  Google Scholar 

Klompas M, Rhee C (2016) Sepsis and the theory of relativity: measuring a moving target with a moving measuring stick. Crit Care 20:1–3. https://doi.org/10.1186/S13054-016-1559-Z/METRICS

Article  Google Scholar 

Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:775–787. https://doi.org/10.1001/JAMA.2016.0289

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rhee C, Gohil S, Klompas M (2014) Regulatory mandates for sepsis care—reasons for caution. N Engl J Med 370:1673–1676. https://doi.org/10.1056/NEJMP1400276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jafarzadeh SR, Thomas BS, Marschall J, Fraser VJ, Gill J, Warren DK (2016) Quantifying the improvement in sepsis diagnosis, documentation, and coding: the marginal causal effect of year of hospitalization on sepsis diagnosis. Ann Epidemiol 26:66–70. https://doi.org/10.1016/J.ANNEPIDEM.2015.10.008

Article  PubMed  Google Scholar 

Li A, Ling L, Qin H, Arabi YM, Myatra SN, Egi M, Kim JH, Basri M, Nor M, Son N, Fang W-F, Wahyuprajitno B, Hashmi M, Faruq MO, Patjanasoontorn B, Jaffer M, Bahrani A, Shrestha BR, Shrestha U, Mahmood K, Nafees K, Sann KK, Emmanuel J, Palo M, Mendsaikhan N, Konkayev A, Detleuxay K, Chan YH, Du B, Divatia JV, Koh Y, Gomersall CD, Phua J (2022) Epidemiology, management, and outcomes of sepsis in ICUs among countries of differing national wealth across Asia. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202112-2743OC

Article  PubMed  PubMed Central  Google Scholar 

Jeganathan N (2022) Burden of sepsis in India. Chest 161:1438–1439. https://doi.org/10.1016/j.chest.2022.02.008

Article  PubMed  Google Scholar 

Vincent J-L, Moreno R, Takala J, Willatts S, de Mendona A, Bruining H, Reinhart CK, Suter PM, Thijs LG, De Mendonga A, Suter RM (1996) The SOFA (Sepsis.related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710

Article  CAS  PubMed  Google Scholar 

Gil Cebrian J, Bello Cámara MP, Diaz-Alersi R (1987) APACHE II: a severity of disease classification system. Intensive Care Med 13:143. https://doi.org/10.1097/00003465-198603000-00013

Article  CAS  PubMed  Google Scholar 

Do SN, Dao CX, Nguyen TA, Nguyen MH, Pham DT, Nguyen NT, Huynh DQ, Hoang QTA, Van Bui C, Vu TD, Bui HN, Nguyen HT, Hoang HB, Le TTP, Nguyen LTB, Duong PT, Nguyen TD, Le VH, Pham GTT, Bui GTH, Van Bui T, Pham TTN, Van Nguyen C, Nguyen AD, Phua J, Li A, Luong CQ (2023) Sequential organ failure assessment (SOFA) score for predicting mortality in patients with sepsis in Vietnamese intensive care units: a multicentre, cross-sectional study. BMJ Open. https://doi.org/10.1136/bmjopen-2022-064870

Article  PubMed  PubMed Central  Google Scholar 

Mirijello A, Fontana A, Greco AP, Tosoni A, D’Agruma A, Labonia M, Copetti M, Piscitelli P, De Cosmo S (2023) on behalf of the internal medicine sepsis study group, identifying predictors associated with risk of death or admission to intensive care unit in internal medicine patients with sepsis: a comparison of statistical models and machine learning algorithms. Antibiotics. https://doi.org/10.3390/antibiotics12050925

Article  PubMed  PubMed Central  Google Scholar 

Choi MH, Kim D, Choi EJ, Jung YJ, Choi YJ, Cho JH, Jeong SH (2022) Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records. Sci Rep. https://doi.org/10.1038/s41598-022-11226-4

Article  PubMed  PubMed Central  Google Scholar 

Greco M, Caruso PF, Spano S, Citterio G, Desai A, Molteni A, Aceto R, Costantini E, Voza A, Cecconi M (2023) Machine learning for early outcome prediction in septic patients in the emergency department. Algorithms. https://doi.org/10.3390/a16020076

Article  Google Scholar 

Zhang Y, Xu W, Yang P, Zhang A (2023) Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-023-02383-1

Article  PubMed  PubMed Central  Google Scholar 

Petch J, Di S, Nelson W (2022) Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can J Cardiol 38:204–213. https://doi.org/10.1016/J.CJCA.2021.09.004

Article  PubMed  Google Scholar 

Amann J, Blasimme A, Vayena E, Frey D, Madai VI (2020) Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 20:310. https://doi.org/10.1186/s12911-020-01332-6

Article  PubMed  PubMed Central  Google Scholar 

Reddy S (2022) Explainability and artificial intelligence in medicine, lancet digit. Health 4:e214–e215. https://doi.org/10.1016/S2589-7500(22)00029-2

Article  CAS  Google Scholar 

Bao C, Deng F, Zhao S (2023) Machine-learning models for prediction of sepsis patients mortality. Medicina Intensiva 47:315–325. https://doi.org/10.1016/j.medine.2022.06.024

Article  CAS  PubMed  Google Scholar 

X. Lu, J. Zhu, J. Gui, Q. Li, Prediction of All-cause Mortality with Sepsis-associated Encephalopathy in the ICU Based on Interpretable Machine Learning, in: 2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022, Institute of Electrical and Electronics Engineers Inc., 2022: pp. 298–302. https://doi.org/10.1109/ICMA54519.2022.9856126.

van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Vander Laenen M, Celi LA, de Deyne C (2016) Scalable predictive analysis in critically ill patients using a visual open data analysis platform. PLoS One. https://doi.org/10.1371/journal.pone.0145791

Article  PubMed  PubMed Central  Google Scholar 

Kong G, Lin K, Hu Y (2020) Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-020-01271-2

Article  PubMed  PubMed Central  Google Scholar 

Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall MK (2016) Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med 23:269–278. https://doi.org/10.1111/acem.12876

Article  PubMed  PubMed Central  Google Scholar 

Z. Zhang, Y. Hong, Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression, 2017. www.impactjournals.com/oncotarget.

J.W. Choi, J.W. Kim, J.H. Nam, J.Y. Maeng, K.H. Kim, S. Park, Artificial Intelligence for Predicting Mortality Due to Sepsis, in: Digest of Technical Papers - IEEE International Conference on Consumer Electronics, Institute of Electrical and Electronics Engineers Inc., 2023. https://doi.org/10.1109/ICCE56470.2023.10043540.

Ribas Ripoll VJ, Vellido A, Romero E, Ruiz-Rodríguez JC (2014) Sepsis mortality prediction with the quotient basis kernel. Artif Intell Med 61:45–52. https://doi.org/10.1016/j.artmed.2014.03.004

Article  PubMed  Google Scholar 

J. Shin, Y. Li, Y. Luo, Early Prediction of Mortality in Critical Care Setting in Sepsis Patients Using Structured Features and Unstructured Clinical Notes, Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 (2021) 2885–2890. https://doi.org/10.1109/BIBM52615.2021.9669822.

M. Shukla, J. Lin, O. Seneviratne, Collaboratively Learning Optimal Patient Outcomes Using Smart Contracts in Limited Data Settings, in: Proceedings - 2022 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2022, Institute of Electrical and Electronics Engineers Inc., 2022: pp. 133–137. https://doi.org/10.1145/3551455.3559600.

Yong L, Zhenzhou L (2024) Deep learning-based prediction of in-hospital mortality for sepsis. Sci Rep. https://doi.org/10.1038/s41598-023-49890-9

Article  PubMed  PubMed Central 

Comments (0)

No login
gif