Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng. 2019. https://doi.org/10.1155/2019/5340616.
Article PubMed PubMed Central Google Scholar
Yan Q, Dong H, Su J, et al. A review of 3D printing technology for medical applications. Eng. 2018. https://doi.org/10.1016/j.eng.2018.07.021.
Ballard DH, Trace AP, Ali S, et al. Clinical applications of 3D printing: primer for radiologists. Acad Radiol. 2018. https://doi.org/10.1016/j.acra.2017.08.004.
Article PubMed PubMed Central Google Scholar
Bustillo JPO, Paino J, Barnes M, et al. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Phys Med Biol. 2024. https://doi.org/10.1088/1361-6560/ad5b48.
Mei K, Pasyar P, Geagan M, et al. Design and fabrication of 3D-printed patient-specific soft tissue and bone phantoms for CT imaging. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-44602-9.
Article PubMed PubMed Central Google Scholar
Okkalidis N. A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Med Phys. 2018. https://doi.org/10.1002/mp.13154.
Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015. https://doi.org/10.1016/j.jss.2015.06.051.
Jung KH, Han DH, Lee KY, Kim JO, Ahn WS, Baek CH. Evaluating the performance of thermoplastic 3D bolus used in radiation therapy. Appl Radiat Isot. 2024. https://doi.org/10.1016/j.apradiso.2024.111329.
Fujibuchi T. Investigation of a method for creating neonatal chest phantom using 3D printer. J Phys Conf Ser. 2021. https://doi.org/10.1088/1742-6596/1943/1/012056.
Mille MM, Griffin KT, Maass-Moreno R, Lee C. Fabrication of a pediatric torso phantom with multiple tissues represented using a dual nozzle thermoplastic 3D printer. J Appl Clin Med Phys. 2020. https://doi.org/10.1002/acm2.13064.
Article PubMed PubMed Central Google Scholar
Hatamikia S, Jaksa L, Kronreif G, et al. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT. J Med Phys. 2023. https://doi.org/10.1016/j.zemedi.2023.05.007.
Hernandez-Giron I, Den Harder JM, Streekstra GJ, Geleijns J, Veldkamp WJH. Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT. Phys Med. 2019. https://doi.org/10.1016/j.ejmp.2018.11.015.
Nguyen P, Stanislaus I, McGahon C, et al. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. Front Med. 2023. https://doi.org/10.3389/fmedt.2023.1097850.
Madamesila J, McGeachy P, Villarreal Barajas JE, Khan R. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy. Phys Med. 2016. https://doi.org/10.1016/j.ejmp.2015.09.013.
Tino RB, Yeo AU, Brandt M, Leary M, Kron T. A customizable anthropomorphic phantom for dosimetric verification of 3D-printed lung, tissue, and bone density materials. Med Phys. 2022. https://doi.org/10.1002/mp.15364.
Tino R, Yeo A, Brandt M, Leary M, Kron T. The interlace deposition method of bone equivalent material extrusion 3D printing for imaging in radiotherapy. Mater Des. 2021. https://doi.org/10.1016/j.matdes.2020.109439.
Mei K, Geagan M, Roshkovan L, et al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: emulating lung tissue with accurate attenuation profiles and textures. Med Phys. 2022. https://doi.org/10.1002/mp.15407.
Mei K, Geagan M, Shapira N, et al. PixelPrint: three-dimensional printing of patient-specific soft tissue and bone phantoms for CT. Proc SPIE-Int Soc Opt Eng. 2022. https://doi.org/10.1117/12.2647008.
Article PubMed PubMed Central Google Scholar
Kozee M, Weygand J, Andreozzi JM, et al. Methodology for computed tomography characterization of commercially available 3D printing materials for use in radiology/radiation oncology. J Appl Clin Med Phys. 2023. https://doi.org/10.1002/acm2.13999.
Article PubMed PubMed Central Google Scholar
Savi M, Potiens MPA, Cechinel CM, Silveira LC, Soares FAP. Relationship between infill patterns in 3D printing and hounsfield unit. Rio de Janeiro (Brazil): Radiat Prot Dosimetry; 2017.
Chouhan G, Bala MG. Designs, advancements and applications of three-dimensional printed gyroid structures: a review. Proc Inst Mech Eng. 2024. https://doi.org/10.1177/09544089231160030.
Fonseca GP, Rezaeifar B, Lackner N, Haanen B, Reniers B, Verhaegen F. Dual-energy CT evaluation of 3D printed materials for radiotherapy applications. Phys Med Biol. 2023. https://doi.org/10.1088/1361-6560/acaf4a.
Sechopoulos I, Rogers DWO, Bazalova-Carter M, et al. RECORDS: improved reporting of montE CarlO RaDiation transport studies: report of the AAPM research committee task group 268. Med Phys. 2018. https://doi.org/10.1002/mp.12702.
Sarrut D, Bała M, Bardiès M, et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol. 2021. https://doi.org/10.1088/1361-6560/abf276.
Article PubMed PubMed Central Google Scholar
Sato T, Iwamoto Y, Hashimoto S, et al. Recent improvements of the particle and heavy ion transport code system–PHITS version 3.33. J Nucl Sci Technol. 2024;61(1):127–35. https://doi.org/10.1080/00223131.2023.2275736.
Nasr B, Villa M, Benoit D, Visvikis D, Bert J. Monte Carlo dosimetry validation for X-ray guided endovascular procedures. Ann Vasc Surg. 2024. https://doi.org/10.1016/j.avsg.2023.07.104.
Ghazizadeh E, Neshastehrizb A. Evaluation of skin and organ dose of patients caused by computed CT and comparison with Monte Carlo simulation software GEANT4 (GATE). SciBase Epidemiol Public Health. 2024. https://doi.org/10.52768/epidemiology/1016.
Ozaki Y, Watanabe H, Kurabayashi T. Effective dose estimation in cone-beam computed tomography for dental use by Monte-Carlo simulation optimizing calculation numbers using a step-and-shoot method. Dentomaxillofac Radiol. 2021. https://doi.org/10.1259/dmfr.20210084.
Article PubMed PubMed Central Google Scholar
Vorbau R, Poludniowski G. SpekPy Web—online X-ray spectrum calculations using an interface to the SpekPy toolkit. J Appl Clin Med Phys. 2024. https://doi.org/10.1002/acm2.14301.
Article PubMed PubMed Central Google Scholar
Tsuda M. A few remarks on photoluminescence dosimetry with high energy X-rays. Jpn J Med Phys. 2000;20(3):131–9. https://doi.org/10.11323/jjmp2000.20.3_131.
Apostolakopoulos FH, Kržanović N, Perazić L, Stanković K. Comparison of the angular response of thermoluminescent and optically stimulated luminescent personal dosimeters. Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering. 2017.
Hsu S-M, Yang H-W, Yeh T-C, et al. Synthesis and physical characteristics of radiophotoluminescent glass dosimeters. Radiat Meas. 2007. https://doi.org/10.1016/j.radmeas.2007.01.053.
Araki F, Ishidoya T, Ikegami T, Moribe N, Yamashita Y. Application of a radiophotoluminescent glass plate dosimeter for small field dosimetry. Med Phys. 2005. https://doi.org/10.1118/1.1925187.
https://www.3dsourced.com/guides/3d-print-shrinkage-pla-abs-petg/.
Zhu Q, Liu Y, Cai Y, Wu M. Research on the shrinkage of model with hole in PLA material based on the FDM 3D printing ICMIA 2017. Atlantis Press. 2017. https://doi.org/10.2991/icmia-17.2017.95.
Ian Gibson IG. Additive manufacturing technologies 3D printing, rapid proto
Comments (0)