Comparison of image quality evaluation methods for magnetic resonance imaging using compressed sensing–sensitivity encoding (CS-SENSE)

Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

Article  CAS  PubMed  Google Scholar 

Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med. 2008;60(4):895–907. https://doi.org/10.1002/mrm.21728.

Article  PubMed  PubMed Central  Google Scholar 

Breuer FA, Kannengiesser SA, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G-factor calculation in GRAPPA reconstructions. Magn Reson Med. 2009;62(3):739–46. https://doi.org/10.1002/mrm.22066.

Article  PubMed  Google Scholar 

Candàes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Inst Electr Electron Eng IEEE Trans Inf Theory. 2006;52(2):489–509.

Google Scholar 

Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

Article  PubMed  Google Scholar 

Donoho DL. Compressed sensing. Trans Inf Theory. 2006;52(4):1289–306.

Article  Google Scholar 

Candàes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25(2):21–30.

Article  Google Scholar 

Feng L, Benkert T, Block KT, Sodickson DK, Otazo R, Chandarana H. Compressed sensing for body MRI. J Magn Reson Imag. 2017;45(4):966–87. https://doi.org/10.1002/jmri.25547.

Article  Google Scholar 

Sartoretti T, Reischauer C, Sartoretti E, Binkert C, Najafi A, Sartoretti-Schefer S. Common artefacts encountered on images acquired with combined compressed sensing and SENSE. Insights Imag. 2018;9(6):1107–15.

Article  Google Scholar 

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.

Article  PubMed  Google Scholar 

David GL. Object recognition from local scale-invariant features. In: Proc Int Conf Comput Vis. 1999;2(2):1150–1157.

David GL. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.

Article  Google Scholar 

Akasaka T, Fujimoto K, Yamamoto T, Okada T, Fushumi Y, Yamamoto A, Tanaka T, Togashi K. Optimization of regularization parameters in compressed sensing of magnetic resonance angiography: can statistical image metrics mimic radiologists’ perception? PLoS ONE. 2016;11(1):1–14.

Article  Google Scholar 

Koori N. Influence of denoising level change on quantitative values in combined compressed sensing and parallel imaging method. J Jpn Assoc Radiol Technol. 2023;70(854):50–6 ([in Japanese]).

Google Scholar 

Stalder AF, Schmidt M, Quick HH, Schlamann M, Maderwald S, Schmitt P, Wang Q, Nadar MS, Zenge MO. Highly undersampled contrast-enhanced MRA with iterative reconstruction: integration in a clinical setting. Magn Reson Med. 2015;74(6):1652–60.

Article  CAS  PubMed  Google Scholar 

Saotome K, Matsushita A, Matsumoto K, Kato Y, Nakai K, Murata K, Yamamoto T, Sankai Y, Matsumura A. A brain phantom for motion-corrected PROPELLER showing image contrast and construction similar to those of in vivo MRI. Magn Reson Imaging. 2017;36:32–9. https://doi.org/10.1016/j.mri.2016.10.003.

Article  PubMed  Google Scholar 

Arganda-Carreras I, Cardona A, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Sebastian Seung H. Trainable weka segmentation. [cited 2015 18 May]. https://imagej.net/software/fiji/downloads

Sage D, Unser M. Teaching image-processing programming in Java. IEEE Signal Process Mag. 2003;20(6):43–52.

Article  Google Scholar 

Hindman JC. Proton resonance shift of water in the gas and liquid states. J Chem Phys. 1966;44(12):4582–92.

Article  CAS  Google Scholar 

Liljequist D, Elfving B, Skavberg RK. Intraclass correlation a discussion and demonstration of basic features. PLoS ONE. 2019;14(7): e021985428. https://doi.org/10.1371/journal.pone.0219854.

Article  CAS  Google Scholar 

Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

Article  CAS  PubMed  Google Scholar 

Poiraudeau S, Chevalier X, Conrozier T, et al. Reliability, validity, and sensitivity to change of the Cochin hand functional disability scale in hand osteoarthritis. Osteoarthr Cartil. 2001;9(6):570–7. https://doi.org/10.1053/joca.2001.0422.

Article  CAS  Google Scholar 

Glockner JF, Hu HH, Stanley DW, Angelos L, King K. Parallel MR imaging: a user’s guide. Radiographics. 2005;25(5):1279–97. https://doi.org/10.1148/rg.255055128.

Article  PubMed  Google Scholar 

Cho SJ, Choi YJ, Chung SR, Lee JH, Baek JH. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique. Clin Radiol. 2019;74(10):817.e9-e14. https://doi.org/10.1016/j.crad.2019.06.023.

Article  CAS  PubMed  Google Scholar 

Suh CH, Jung SC, Lee HB, Cho SJ. High-resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: comparison with conventional parallel imaging. Korean J Radiol. 2019;20(3):487–97. https://doi.org/10.3348/kjr.2018.0424.

Article  PubMed  PubMed Central  Google Scholar 

Jang JS, Lee HB, Suh CH, Lee MH. Image quality and acquisition time assessments for phase oversampling in compressed sensing sensitivity encoding: comparison with conventional SENSE. J Appl Clin Med Phys. 2022;23(2): e13509. https://doi.org/10.1002/acm2.13509.

Article  PubMed  Google Scholar 

Vranic JE, Cross NM, Wang Y, Hippe DS, de Weerdt E, Mossa-Basha M. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. AJNR Am J Neuroradiol. 2019;40(1):92–8. https://doi.org/10.3174/ajnr.A5905.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu J, Liu J, Bi Z, Sun X, Gu Q, Hu G, Qin N. An investigation of 2D spine magnetic resonance imaging (MRI) with compressed sensing (CS). Skelet Radiol. 2022;51(6):1273–83. https://doi.org/10.1007/s00256-021-03954-x.

Article  Google Scholar 

Comments (0)

No login
gif